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a b s t r a c t 

In this paper, we study the Cardinality Constrained Multi-cycle Problem (CCMcP) and the Cardinality Con- 

strained Cycle and Chain Problem (CCCCP). A feasible solution allows one or more cardinality-constrained 

cycles to exist on the digraph. A vertex can only be involved in at most one cycle, and there may be ver- 

tices not involved in any cycles. The CCCCP has an additional set of vertices that can only serve–and are 

the only vertices that can serve–as the starting vertex of a chain. Apart from cycles, a feasible solution to 

the CCCCP may also contain multiple cardinality-constrained chains. A vertex can be involved in a chain 

or a cycle, but not both. Both of the CCMcP and the CCCCP are NP-hard. 

This paper focuses on the polyhedral study of the arc-based formulations for both problems. We prove 

that 3 classes of constraints are facet-defining for the CCMcP polytope, identify 4 new classes of con- 

straints and prove their validity. We then prove that the non-negativity and the degree constraints are 

facet-defining for the CCCCP polytope. Even though we cannot expect to find a complete polyhedral de- 

scription (CPD) of the CCMcP or the CCCCP, as both problems are NP-hard, any partial description is al- 

ways interesting for both theoretical and computational purposes, since the wider the linear description, 

the less need for branching. A CPD is composed of facet-defining constraints, hence the major contri- 

bution of this paper is one step towards finding a CPD for the CCMcP and the CCCCP. We tested the 

strengths of the facet-defining constraints and new valid constraints on two sets of randomly generated 

data instances. We reported the numerical results and discussed future research directions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

We first provide a mathematical description of the two combi- 

natorial optimization problems under study in this paper. Consider 

a digraph D = (V, A ) with V the set of vertices and A the set of 

arcs. Each arc a ∈ A is associated with a weight w a . A feasible so- 

lution to the Cardinality Constrained Multi-cycle Problem (CCMcP) 

is a set of arcs forming several (maybe zero) vertex-disjoint cycles. 

Note that there may be vertices not involved in any cycle and that 

the empty solution is also considered feasible. A k -cycle is a single- 

cycle that involves k arcs (and vertices). The cycles in a CCMcP are 

constrained in size, with cardinality not exceeding K , for 2 ≤ K ≤ | V |. 

An optimal solution to the CCMcP, however, is one that maximizes 

the total weight of arcs involved in all cycles. In the case when 

all arc weights are “1”, the objective function is then equivalent to 

maximizing the total number of arcs used. In comparison to the 

well-known Asymmetric Travelling Salesman Problem (ATSP), the 

two main differences are: (1) in an ATSP, the Assignment Problem 
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(AP) relaxation also allows multiple cycles (subtours), but these cy- 

cles are not constrained in size, however “subtours” in a CCMcP 

are; and (2) all vertices in an ATSP must be visited, but this is not 

the case for a CCMcP. 

Now we describe the Cardinality Constrained Cycle and Chain 

Problem (CCCCP). Consider again D = (V, A ) , where the set of ver- 

tices V is partitioned into: V = N ∪ P with N ∩ P = ∅ , and the set 

of arcs is given by: A = { (i, j) | i, j ∈ P, i � = j} ∪ { (i, j) | i ∈ N, j ∈ P } . 
A feasible solution to the CCCCP, like that of a CCMcP, allows one 

or more cardinality constrained cycles, though a cycle can only in- 

volve arcs in the set {( i, j ) | i, j ∈ P, i � = j }. A CCCCP also allows one or 

more chains, where the first arc in a chain must be from the set 

{( i, j ) | i ∈ N, j ∈ P }, and subsequent arcs must be from the set {( i, j ) | i, 

j ∈ P, i � = j }. An � -chain is a chain that contains � vertices. The length 

of the chains is constrained to be no more than L vertices. A ver- 

tex in P cannot be in more than one cycle or chain, and a vertex 

in N cannot be in more than one chain. An optimal solution to the 

CCCCP is one that maximizes the total weight of arcs in all chains 

and cycles. 

The CCMcP and the CCCCP have been studied in the context 

of Kidney Exchange Problems (KEPs) (which is under the general 
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umbrella of barter exchange) both in terms of mathematical mod- 

elling and solution methodologies. In the literature of KEPs, L = K

is considered in e.g., Manlove and O’Malley (2012) ; L > K is con- 

sidered in, e.g., Glorie et al. (2014) , Dickerson et al. (2016b) and 

Plaut et al. (2016) ; and L = ∞ in, e.g., Anderson et al. (2015) . A 

review of KEP solution methods will be provided in Section 1.2 . 

The CCMcP is NP-hard, except for the case when K = 2 (see, e.g., 

Abraham et al., 2007 and Biró et al., 2009 ). The CCCCP is also NP- 

hard (see, e.g., Anderson et al., 2015 ). 

The main contribution of this paper is the theoretical analysis 

of the arc-based formulations of the CCMcP and CCCCP, with the 

aim of adding to the literature of polyhedral analyses of arc-based 

formulations of constrained or unconstrained single- or multi-cycle 

problems defined on directed or undirected graphs. As both of the 

CCMcP and the CCCCP are NP-hard, we cannot expect to find a 

complete polyhedral description for either of them. However, any 

partial description is always interesting for both theoretical and 

computational purposes (the wider the linear description, the less 

need for branching). In Section 1.3 , we review polyhedral results on 

a number of closely related combinatorial optimization problems. 

To the best of our knowledge, there has not been any polyhedral 

study of the CCMcP or the CCCCP, except for Mak-Hau (2015) . 

1.1. The kidney exchange problem 

The Kidney Exchange-family of Problems (KEPs) have attracted 

the attention of the combinatorial optimisation community in the 

last decade or so. The KEP can be represented on a directed graph, 

with vertices representing the incompatible patient-donor pairs 

(PDPs)–by an incompatible pair, we mean a patient-donor pair 

(usually family or friends) such that the patient cannot accept the 

kidney of the donor due to ABO blood type incompatibility or pos- 

itive serological cross match. A kidney exchange pool contains a 

large number of such PDPs. If the kidney of the donor in Pair A 

is a match for the patient in Pair B, then it can be represented as 

an arc from vertex A to vertex B on the digraph, and if an arc also 

exists in the opposite direction, then an exchange of kidneys can 

be carried out between PDPs A and B. Such an exchange is called a 

2-cycle (a cycle involving 2 PDPs, hence 2 vertices on the digraph). 

An exchange can also involve more than two vertices. A 3-cycle 

may have the kidney of the donor in Pair A be donated to the pa- 

tient in Pair B, that of the donor in Pair B donated to the patient 

in Pair C, and that of the donor in Pair C donated to the patient 

in Pair A. A k -cycle will be a single cycle that involves k pairs of 

PDPs, with no sub-cycles involved. As a donor is not legally bound 

to donate a kidney, in order to avoid donors quitting the program 

as soon as their partners receive their kidneys, the exchanges in- 

volved in a k -cycle are normally performed simultaneously, hence 

it is impractical for the cardinality limit ( K ) of the kidney exchange 

cycles to be too large. In the context of kidney exchange, 2- and 3- 

cycles are very common, although the largest exchange cycle per- 

formed involved nine PDPs (see, e.g., SF Gate, 2015 ). In a kidney ex- 

change solution, multiple exchange cycles exist in a pool, hence the 

underlying combinatorial optimisation problem is in fact a CCMcP. 

In recent years, some kidney exchange pools have altruistic 

donors involved. A kidney exchange sequence that begins from an 

altruistic donor, who donates his/her kidney to a patient in a PDP, 

with the donor of this PDP in turn donating his/her kidney to the 

patient in a another PDP and so on, will eventually terminate at a 

deceased donor waiting list. Such a sequence of kidney exchanges 

is called a chain. The value L in a CCCCP is called the cap size in the 

context of KEP. On a directed graph, we will use the set N to de- 

note the set of altruistic donors, and P to denote the set of PDPs. 

A kidney donate chain that begins from an altruistic donor will 

form a chain on the directed graph. As both chains and cycles are 

expected to exist as a solution to a kidney exchange optimisation 

problem, the underlying combinatorial optimisation problem is a 

CCCCP. 

The objective of a kidney exchange optimisation problem is to 

maximise either the number of kidney exchanges, or a weighted 

sum of some metrics of the exchanges, and by weight, we mean a 

“score” for each transplant based on some prioritisation scheme. 

This means that in the underlying combinatorial optimisation 

problem, the objective function is to either maximise the total 

number of arcs used in the cycles (and chains) or to maximise the 

total weighted arc costs. 

1.2. State-of-the-art solution methods 

Integer programming models developed for the CCMcP and 

the CCCCP, (which are mostly developed in the context of KEP), 

can be classified into three main branches: (a) arc-based mod- 

els with a small number of variables, but exponentially many 

constraints (see, e.g., Roth et al., 2007 for CCMcP and Mak- 

Hau, 2017 for CCCCP); (b) cycle-based models with a small num- 

ber of constraints, but exponentially many variables (see, e.g., 

Abraham et al., 2007 and Roth et al., 2007 for CCMcP and 

Anderson et al., 2015 for CCCCP); and (c) arc-based compact mod- 

els that create multiple clones of the directed graph, making it 

possible to have both variables and constraints be polynomial 

in size (see, e.g., Constantino et al., 2013 and Dickerson et al., 

2016b ). In terms of solution methodologies, branch-and-price 

based methods are applied with implementation details pre- 

sented in, e.g., Abraham et al. (2007) , Glorie et al. (2014) , 

Klimentova et al. (2014) and Plaut et al. (2016) . A summary re- 

view of the performances of Abraham et al. (2007) , Manlove and 

O’Malley (2012) , Constantino et al. (2013) , Glorie et al. (2014) , 

Klimentova et al. (2014) , Anderson et al. (2015) , and Mak- 

Hau (2017) can be found in Mak-Hau (2017) , together with details 

on the sizes of problem tackled, and values K and L tested. 

Recently, Dickerson et al. (2016b) presented a new polynomial 

size formulations for the CCMcP and the CCCCP with bounded L 

wherein a binary variable is used to determine whether an arc 

is used in a particular position of a cycle in a particular copy 

of the digraph–a concept that is an extension to the extended 

edge formulation proposed by Constantino et al. (2013) and with 

a stronger LP relaxation (LPR) bound. A polynomial size algorithm 

for variable elimination in pre-processing was discussed and im- 

plemented. The position-indexed edge formulation (PIEF) is devel- 

oped for the CCMcP. For the CCCCP, a similar idea is used for the 

chain variables, though for the cycles, a binary variable is used for 

each cycle. When K is small, these cycles can be completely enu- 

merated, but a pricing algorithm was proposed for a branch-and- 

price version of the model, called PICEF. Finally, a hybrid version is 

proposed that uses the position based binary variables for both cy- 

cles and chains (HPIEF). The authors extensively tested their meth- 

ods on a number of large-scale problem instances, with K = 3 and 

L varying from 2 to 12, and sizes as large as, e.g.: | P | = 700 with 

| N| = 35 , and | P | = 500 with | N| = 125 . From the experiments, it 

appears that PICEF and HPIEF outperformed all other methods 

tested. The paper also provided a proof that the LPR of PIEF is 

as strong as the cycle-formulation (see Abraham et al., 2007 and 

Roth et al., 2007 ). 

The models/methods listed above are mainly for single- 

objective implementation. Multi-objective approaches are dis- 

cussed in Glorie et al. (2014) , and implemented in Manlove and 

O’Malley (2012) and Manlove and O’Malley (2015) . The 

method of Manlove and O’Malley (2012) and Manlove and 

O’Malley (2015) promote the use of shorter cycles e.g., 2-cycles as 

well as 3-cycles with a back arc (i.e., the subgraph of the 3-cycle 

contains at least one 2-cycle, such that if one arc is broken, i.e., 

one transplant cannot move forward, the remaining two PDPs 
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