
ARTICLE IN PRESS 

JID: CAOR [m5G; May 13, 2017;14:38 ] 

Computers and Operations Research 0 0 0 (2017) 1–8 

Contents lists available at ScienceDirect 

Computers and Operations Research 

journal homepage: www.elsevier.com/locate/cor 

Forecasting for big data: Does suboptimality matter? 

Konstantinos Nikolopoulos a , ∗, Fotios Petropoulos b 

a forLAB, Bangor Business School, Bangor University, UK 
b School of Management, University of Bath, UK 

a r t i c l e i n f o 

Article history: 

Received 12 September 2016 

Revised 16 January 2017 

Accepted 8 May 2017 

Available online xxx 

Keywords: 

Forecasting 

Big data 

Optimisation 

Retail 

a b s t r a c t 

Traditionally, forecasters focus on the development algorithms to identify optimal models and sets of 

parameters, optimal in the sense of within-sample fitting. However, this quest strongly assumes that op- 

timally set parameters will also give the best extrapolations. The problem becomes even more pertinent 

when we consider the vast volumes of data to be forecast in the big data era. In this paper, we argue if 

this obsession to optimality always bares the respective fruits or do we spend too much time and effort 

in the pursuit of it. Could we better off by targeting for faster and robust systems that would aim for 

suboptimal forecasting solutions which, in turn, would not jeopardise the efficiency of the systems under 

use? This study throws light to that end by means of an empirical investigation. We show the trade-off

between optimal versus suboptimal solutions in terms of forecasting performance versus computational 

cost. Finally, we discuss the implications of suboptimality and attempt to quantify the monetary savings 

as a result of suboptimal solutions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Every forecasting story starts with the same ritual: an excerpt 

from the renowned M-Competitions ( Makridakis et al., 1982; 1993; 

Makridakis and Hibon, 20 0 0 ). The forecasting competitions that 

from the early 80s to late 90s road-mapped the basic principles of 

forecasting; with the first one being: “statistically sophisticated or 

complex methods do not necessarily provide more accurate fore- 

casts than simpler ones”. 

The story remains by and large the same up to today - with 

even the latest state of the art research supporting the assertion. 

Ghandara et al. (2016) provided further empirical evidence that 

nature-inspired optimization routines embedded in complex mod- 

els do not necessarily lead to any performance improvement, if 

any. They demonstrate that under the volatility and uncertainty 

met in most financial markets, complex prediction models are on 

par or worse than more simple models in out-of-sample forecast- 

ing evaluation and they urge for future research to focus on the 

conditions under which computer intelligence optimization meth- 

ods are being utilized in practice. 

In fact forecasting as a discipline has not moved forward much 

since these research milestones were achieved back in the 80s and 

90s. And that despite the call for action from the very originator of 

the field, Professor Spyros Makridakis. In an interview for the In- 
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ternational Journal of Forecasting ( Fildes and Nikolopoulos, 2006 ), 

he urged for seizing the power provided from super-intelligent and 

super-fast ICT systems in order to see, analyse and forecast data in 

a much better way. In a way, he opened the “forecasting for big 

data” agenda much earlier and asked the pure ICT potential to be 

harnessed for better forecasting capabilities in practice. The theory, 

however, was there anyway for many decades in the form of ad- 

vanced data mining and knowledge extraction algorithms ( Härdle, 

1992; Haykin, 1998; 2008; Heaton, 2012 ). 

This lack of progress is not attributed to neither the lack of 

IT/ICT power nor the (non-) advance of respective algorithms: it 

is all down to 21st-century business environment being so volatile 

that only robust and fast adaptive methods can provide good fore- 

casts over a long period of time. This last point is very important 

as we need accurate forecasts for each and every decision (and 

thus) forecasting period. So, one-off “wonder” forecasting methods 

are not good in real life; robustness is a key element. 

Another key point for methods to be successful is to be simple, 

as per the opening quote, but also being adaptive and able to be 

tuned fast for the respective performance. Methods that over learn 

and overoptimise training data sets are not good enough in real 

life contexts ( Haykin, 1998 ), as the in-sample learning follows a U- 

shape function so that after a point over-training leads to negative 

in-sample and even worse out-of-sample performance. 

This is exactly what our contribution from this research is aspir- 

ing to corroborate. What is the extent of optimality that we should 

aim for when training and selecting respective parameters in fore- 
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Table 1 

Length of the available monthly industry time series. 

Number of observations 96 122 128 133 134 136 137 139 140 141 142 143 144 

Number of time series 1 1 1 58 46 2 1 9 6 12 5 7 185 

casting methods? We want to explore in-sample optimised subop- 

timal parameter selection of forecasting models, and sequentially 

quantify the impact, if any, on out-of-sample forecasting accuracy 

metrics. 

We consider as an illustrative example the context of retails op- 

eration management: retailers handle from a few hundred prod- 

ucts (in a local store), to a few thousands in a local Tesco Ex- 

press store, to 10 0,0 0 0 SKUs (Stock Keeping Units) in a large Sains- 

bury’s store in UK. The replenishment frequency can be from sev- 

eral hours for fast moving consumer goods like milk and vegeta- 

bles, to weekly for stationery etc. The hierarchy dictates that or- 

ders are set at local shop level but supply is decided at the dis- 

tribution centre level and the method to provide forecasts range 

from very basic extrapolations methods like Naive and Moving Av- 

erages ( Makridakis and Hibon, 20 0 0 ), to very computational inten- 

sive methods with ANNS, Genetic Algorithms and swarm intelli- 

gence ( Haykin, 1998 ). This is an example of “big data” in terms 

of more the sheer volume of information that has to be handled, 

rather than the “richness” of it - in terms of exploratory variables 

that can drive demand. In such contexts any savings that can be 

achieved is important, and to that end suboptimal parameter selec- 

tion could save a lot of computational time in forecasting support 

systems, as will be evidenced in our study. 

In this research study, we explore suboptimality by considering 

a simple forecasting method (Simple Exponential Smoothing) and 

two optimisation approaches (grid-search and trial and error). Us- 

ing a subset of the M3-competition data, we demonstrate the ef- 

fects of suboptimality on forecast accuracy, namely the symmetric 

Mean Absolute Percentage Error and, consequently, the statistical 

differences in the performance rankings. We trade-off forecast ac- 

curacy against the computational time required for producing opti- 

mal versus suboptimal models. The next section discusses the data 

used in this study and the experimental design that was imple- 

mented. Section 3 presents the numerical results. Section 4 pro- 

vides a short discussion of the results as well as implications for 

theory, practice and software vendors. Section 5 concludes the 

study. 

2. Design 

In order to explore the effects of optimality and suboptimal- 

ity on the forecasting performance, we use the monthly industry 

subset from the M3-competition ( Makridakis and Hibon, 20 0 0 ). 

The M3-competition is the largest up-to-date forecasting compe- 

tition, featuring a total of 3003 time series of various categories 

(micro, macro, demography, finance, industry and other) and fre- 

quencies (yearly, quarterly, monthly and other). In the original 

study ( Makridakis and Hibon, 20 0 0 ), 24 methods and commercial 

packages were compared with regards to their forecasting perfor- 

mance. Since then, the data has been used numerous times for re- 

search purposes, and the development of new forecasting methods. 

The industry monthly subset consists of 334 time series of vary- 

ing lengths, however in all cases the available history spreads for 

at least eight years with a mean value of twelve years. The ex- 

act lengths and respective number of time series are presented in 

Table 1 . In their majority, the data represent either sales or de- 

mands and, as such, can be considered a good proxy for retail data. 

The forecasting function that is implemented in this study is 

the simplest form of the exponential smoothing family, the simple 

exponential smoothing (SES) method. SES is very widely used in 

practice and is suitable for data that do not exhibit trend or sea- 

sonality. It is based on an exponential smoothing average, where 

more recent observations are assigned larger weights. The degree 

of the smoothness is controlled via a smoothing parameter, α, 

which takes values in the range [0, 1]. The one-step-ahead fore- 

cast of the exponential smoothing method is calculated as f t+1 = 

αy t + (1 − α) f t , where y t represents the actual value at period t 

and f t the forecast for the respective period. If forecasts for further 

horizons are required, these are equal to the one-step-ahead fore- 

cast, f t+ h = f t+1 , as SES produces flat forecasts. 

In this work we study the effects of optimising (or suboptimis- 

ing) the α smoothing parameter. The initial forecast (also called 

initial level) is not optimised, rather it is set equal to the ini- 

tial actual observation, or f 1 = y 1 . The algorithmic implementation 

(in R language) of SES that we used in this study is provided in 

Appendix A. 

Two simple optimisation methods are considered. The first one 

is widely known as grid-search optimisation (also known as pa- 

rameter sweep or exhaustive search). Keeping in mind that the pa- 

rameter to be optimised can take values within a certain range (in 

our case α takes values in [0, 1]), the algorithm starts from the 

one end of the range and reaches the other end after n steps. Es- 

sentially, all possible values of the parameter within the range are 

considered with an updating interval that equals to m = | max −
min | /n, where max and min correspond to the limits of the range. 

For example, if n = 100 , then every α value with two decimal 

points is tested ( 0 , 0 . 01 , 0 . 02 , . . . , 1 ). For each value of the smooth- 

ing parameter, the corresponding one-step-ahead forecasts are cal- 

culated and the model fit is measured by the means of the Mean 

Squared Error (MSE): 

MSE = 

1 

n 

n ∑ 

i =1 

(y i − f i ) 
2 (1) 

Other error measures could be considered (such as the Mean Ab- 

solute Error, or MAE), however the MSE is the most widely used 

in practice. Effectively, n + 1 MSEs are calculated and the smooth- 

ing parameter with the lowest MSE is considered to be the optimal 

one. The algorithmic implementation of the grid-search optimisa- 

tion is provided in Appendix A . 

The second optimisation algorithm, that we consider in this 

study, is the trial and error algorithm, which is a fixed-step con- 

vergence procedure through a modified Luus–Jakola approach. The 

search of the optimal α smoothing parameter starts from the val- 

ues 1/3 and 2/3 where the corresponding MSEs are calculated. The 

smoothing value with the lowest MSE is selected as the current 

optimal ( ̇ α). For every subsequent step ( k = 2 , 3 , . . . ), the algorithm 

calculates the MSE that corresponds to the smoothing values with 

distance 1 

3 ×2 k −1 
from the current optimal, or ˙ α ± 1 

3 ×2 k −1 
. Among 

the smoothing values ˙ α − 1 
3 ×2 k −1 

, ˙ α and ˙ α + 

1 
3 ×2 k −1 

, the one with 

the lowest MSE is selected as the new current optimal. This pro- 

cedure is repeated for a pre-specified number of steps n , with k ≤
n . Effectively, 2 n MSEs are calculated, while the trial and error ap- 

proach is expected to work well when MSE is a U-shape function 

of the α smoothing parameter. The algorithmic implementation of 

the trial and error optimisation is provided in Appendix A . 

For each of the two optimisation methods discussed above, ten 

cases are considered with regards to the value of n . Table 2 pro- 

vides the number of steps ( n ) considered in each case. It is worth 
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