
Computers and Operations Research 93 (2018) 90–100 

Contents lists available at ScienceDirect 

Computers and Operations Research 

journal homepage: www.elsevier.com/locate/cor 

Relaxation heuristics for the set multicover problem with generalized 

upper bound constraints 

� 

Shunji Umetani a , ∗, Masanao Arakawa 

b , Mutsunori Yagiura 

c 

a Osaka University, Suita, Osaka, 565-0871, Japan 
b Fujitsu Limited, Kawasaki 211-8588, Japan 
c Nagoya University, Nagoya 464-8601, Japan 

a r t i c l e i n f o 

Article history: 

Received 15 May 2017 

Revised 5 January 2018 

Accepted 6 January 2018 

Available online 9 January 2018 

Keywords: 

combinatorial optimization 

set covering problem 

metaheuristics 

local search 

Lagrangian relaxation 

a b s t r a c t 

We consider an extension of the set covering problem (SCP) introducing (i) multicover and (ii) generalized 

upper bound (GUB) constraints. For the conventional SCP, the pricing method has been introduced to re- 

duce the size of instances, and several efficient heuristic algorithms based on such reduction techniques 

have been developed to solve large-scale instances. However, GUB constraints often make the pricing 

method less effective, because they often prevent solutions from containing highly evaluated variables 

together. To overcome this problem, we develop heuristic algorithms to reduce the size of instances, in 

which new evaluation schemes of variables are introduced taking account of GUB constraints. We also 

develop an efficient implementation of a 2-flip neighborhood local search algorithm that reduces the 

number of candidates in the neighborhood without sacrificing the solution quality. In order to guide the 

search to visit a wide variety of good solutions, we also introduce a path relinking method that generates 

new solutions by combining two or more solutions obtained so far. According to computational compar- 

ison on benchmark instances, the proposed method succeeds in selecting a small number of promising 

variables properly and performs quite effectively even for large-scale instances having hard GUB con- 

straints. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

The set covering problem (SCP) is one of representative combi- 

natorial optimization problems. We are given a set of m elements 

i ∈ M = { 1 , . . . , m } , n subsets S j ⊆ M (| S j | ≥ 1) and their costs c j 
( > 0) for j ∈ N = { 1 , . . . , n } . We say that X ⊆ N is a cover of M if 

∪ j∈ X S j = M holds. The goal of SCP is to find a minimum cost cover 

X of M . The SCP is formulated as a 0-1 integer programming (0-1 

IP) problem as follows: 

minimize 
∑ 

j∈ N 
c j x j 

subject to 

∑ 

j∈ N 
a i j x j ≥ 1 , i ∈ M, 

x j ∈ { 0 , 1 } , j ∈ N, 

(1) 

where a i j = 1 if i ∈ S j holds and a i j = 0 otherwise, and x j = 1 if 

j ∈ X and x j = 0 otherwise. That is, a column a j = (a 1 j , . . . , a mj ) 
� 
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of matrix ( a ij ) represents the corresponding subset S j by S j = { i ∈ 

M | a ij = 1 } . For notational convenience, for each i ∈ M , let N i = 

{ j ∈ N | a ij = 1 } be the index set of subsets S j that contains the 

element i . 

The SCP is known to be NP-hard in the strong sense, and there 

is no polynomial time approximation scheme (PTAS) unless P = 

NP. However, the worst-case performance analysis does not neces- 

sarily reflect the experimental performance in practice. The con- 

tinuous development of mathematical programming has much im- 

proved the performance of heuristic algorithms accompanied by 

advances in computing machinery ( Caprara et al., 20 0 0; Umetani 

and Yagiura, 2007 ). For example, Beasley (1990a ) presented a num- 

ber of greedy algorithms based on Lagrangian relaxation called the 

Lagrangian heuristics, and Caprara et al. (1999) introduced pric- 

ing techniques into a Lagrangian heuristic algorithm to reduce the 

size of instances. Several efficient heuristic algorithms based on La- 

grangian heuristics have been developed to solve very large-scale 

instances with up to 50 0 0 constraints and 1,0 0 0,0 0 0 variables with 

deviation within about 1% from the optimum in a reasonable com- 

puting time ( Caprara et al., 1999; Caserta, 2007; Ceria et al., 1998; 

Yagiura et al., 2006 ). 

https://doi.org/10.1016/j.cor.2018.01.007 

0305-0548/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://doi.org/10.1016/j.cor.2018.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.01.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:umetani@ist.osaka-u.ac.jp
mailto:arakawa.masanao@jp.fujitsu.com
mailto:yagiura@nagoya-u.jp
https://doi.org/10.1016/j.cor.2018.01.007
http://creativecommons.org/licenses/by/4.0/


S. Umetani et al. / Computers and Operations Research 93 (2018) 90–100 91 

The SCP has important real applications such as crew schedul- 

ing ( Caprara et al., 1999 ), vehicle routing ( Hashimoto et al., 2009 ), 

facility location ( Boros et al., 2005; Farahani et al., 2012 ), and logi- 

cal analysis of data ( Boros et al., 20 0 0 ). However, it is often difficult 

to formulate problems in real applications as SCP, because they of- 

ten have additional side constraints in practice. Most practitioners 

accordingly formulate them as general mixed integer programming 

(MIP) problems and apply general purpose solvers, which are usu- 

ally less efficient compared with solvers specially tailored to SCP. 

In this paper, we consider an extension of SCP introducing 

(i) multicover and (ii) generalized upper bound (GUB) constraints, 

which arise in many real applications of SCP such as vehicle rout- 

ing ( Bettinelli et al., 2014; Choi and Tcha, 2007 ), crew scheduling 

( Kohl and Karisch, 2004 ), staff scheduling ( Caprara et al., 2003; 

Ikegami and Niwa, 2003 ) and logical analysis of data ( Hammer 

and Bonates, 2006 ). The multicover constraint is a generalization of 

covering constraint ( Pessoa et al., 2013; Vazirani, 2001 ), in which 

each element i ∈ M must be covered at least b i ∈ Z + ( Z + is the set 

of nonnegative integers) times. The GUB constraint is defined as 

follows. We are given a partition { G 1 , . . . , G k } of N ( ∀ h 	 = h ′ , G h ∩ 

G h ′ = ∅ , ∪ 

k 
h =1 

G h = N). For each block G h ⊆ N ( h ∈ K = { 1 , . . . , k } ), 
the number of selected subsets S j from the block (i.e., j ∈ G h ) is con- 

strained to be at most d h ( ≤ | G h |). We call the resulting problem 

the set multicover problem with GUB constraints (SMCP-GUB), which 

is formulated as a 0-1 IP problem as follows: 

minimize z(x ) = 

∑ 

j∈ N 
c j x j 

subject to 

∑ 

j∈ N 
a i j x j ≥ b i , i ∈ M, 

∑ 

j∈ G h 
x j ≤ d h , h ∈ K, 

x j ∈ { 0 , 1 } , j ∈ N. 

(2) 

This generalization of SCP substantially extends the variety of 

its applications. However, GUB constraints often make the pricing 

method less effective, because they often prevent solutions from 

containing highly evaluated variables together. To overcome this 

problem, we develop heuristic algorithms to reduce the size of 

instances, in which new evaluation schemes of variables are in- 

troduced taking account of GUB constraints. We also develop an 

efficient implementation of a 2-flip neighborhood local search al- 

gorithm that reduces the number of candidates in the neighbor- 

hood without sacrificing the solution quality. In order to guide the 

search to visit a wide variety of good solutions, we also introduce 

an evolutionary approach called the path relinking method ( Glover 

and Laguna, 1997 ) that generates new solutions by combining two 

or more solutions obtained so far. 

The SMCP-GUB is NP-hard, and the (supposedly) simpler prob- 

lem of judging the existence of a feasible solution is NP-complete, 

since the satisfiability (SAT) problem can be reduced to this de- 

cision problem. We accordingly allow the search to visit infeasi- 

ble solutions violating multicover constraints and evaluate their 

quality by the following penalized objective function. Note that 

throughout the remainder of the paper, we do not consider solu- 

tions that violate the GUB constraints, and the search only visits 

solutions that satisfy the GUB constraints. Let w = (w 1 , . . . , w m 

) ∈ 

R 

m 

+ ( R + is the set of nonnegative real values) be a penalty weight 

vector. A solution x is evaluated by 

ˆ z (x , w) = 

∑ 

j∈ N 
c j x j + 

∑ 

i ∈ M 

w i max 

{ 

b i −
∑ 

j∈ N 
a i j x j , 0 

} 

. (3) 

If the penalty weights w i are sufficiently large (e.g., w i > �j ∈ N c j 
holds for all i ∈ M ), then we can conclude SMCP-GUB to be in- 

feasible when an optimal solution x ∗ under the penalized objec- 

tive function ˆ z (x , w) violates at least one multicover constraint. 

In our algorithm, the initial penalty weights w i ( i ∈ M ) are set 

to w i = 

∑ 

j∈ N c j + 1 for all i ∈ M . Starting from the initial penalty 

weight vector w ← w , the penalty weight vector w is adaptively 

controlled to guide the search to visit better solutions. 

We present the outline of the proposed algorithm for SMCP- 

GUB. The first set of initial solutions are generated by apply- 

ing a randomized greedy algorithm several times. The algorithm 

then solves a Lagrangian dual problem to obtain a near opti- 

mal Lagrangian multiplier vector ˜ u through a subgradient method 

( Section 2 ), which is applied only once in the entire algorithm. 

Then, the algorithm applies the following procedures in this order: 

(i) heuristic algorithms to reduce the size of instances ( Section 5 ), 

(ii) a 2-flip neighborhood local search algorithm ( Section 3 ), (iii) an 

adaptive control of penalty weights ( Section 4 ), and (iv) a path re- 

linking method to generate initial solutions ( Section 6 ). These pro- 

cedures are iteratively applied until a given time limit has run out. 

2. Lagrangian relaxation and subgradient method 

For a given vector u = (u 1 , . . . , u m 

) ∈ R 

m 

+ , called a Lagrangian 

multiplier vector, we consider the following Lagrangian relaxation 

problem LR( u ) of SMCP-GUB: 

minimize z LR (u ) = 

∑ 

j∈ N 
c j x j + 

∑ 

i ∈ M 

u i 

( 

b i −
∑ 

j∈ N 
a i j x j 

) 

= 

∑ 

j∈ N 

( 

c j −
∑ 

i ∈ M 

a i j u i 

) 

x j + 

∑ 

i ∈ M 

b i u i 

subject to 

∑ 

j∈ G h 
x j ≤ d h , h ∈ K, 

x j ∈ { 0 , 1 } , j ∈ N. 

( 4) 

We refer to ˜ c j (u ) = c j −
∑ 

i ∈ M 

a i j u i as the Lagrangian cost associ- 

ated with column j ∈ N . For any u ∈ R 

m + , z LR ( u ) gives a lower bound 

on the optimal value z ( x ∗) of SMCP-GUB (when it is feasible, i.e., 

there exists a feasible solution to SMCP-GUB). 

The problem of finding a Lagrangian multiplier vector u that 

maximizes z LR ( u ) is called the Lagrangian dual problem (LRD): 

maximize 
{

z LR (u ) | u ∈ R 

m 

+ 
}
. (5) 

For a given u ∈ R 

m + , we can easily compute an optimal solution 

˜ x (u ) = ( ̃  x 1 (u ) , . . . , ̃  x n (u )) to LR( u ) as follows. For each block G h 

( h ∈ K ), if the number of columns j ∈ G h satisfying ˜ c j (u ) < 0 is 

equal to d h or less, then set ˜ x j (u ) ← 1 for variables satisfying 

˜ c j (u ) < 0 and ˜ x j (u ) ← 0 for the other variables; otherwise, set 

˜ x j (u ) ← 1 for variables with the d h lowest Lagrangian costs ˜ c j (u ) 

and ˜ x j (u ) ← 0 for the other variables. 

The Lagrangian relaxation problem LR( u ) has integrality prop- 

erty. That is, an optimal solution to LR( u ) is also optimal to its 

linear programming (LP) relaxation problem obtained by replacing 

x j ∈ {0, 1} in (4) with 0 ≤ x j ≤ 1 for all j ∈ N . In this case, any optimal 

solution u 

∗ to the dual of the LP relaxation problem of SMCP-GUB 

is also optimal to LRD, and the optimal value z LP of the LP relax- 

ation problem of SMCP-GUB is equal to z LR ( u 

∗). 

A common approach to compute a near optimal Lagrangian 

multiplier vector ˜ u is the subgradient method. It uses the sub- 

gradient vector g(u ) = (g 1 (u ) , . . . , g m 

(u )) ∈ R 

m , associated with 

a given u ∈ R 

m + , defined by 

g i (u ) = b i −
∑ 

j∈ N 
a i j ̃  x j (u ) . (6) 

This method generates a sequence of nonnegative Lagrangian mul- 

tiplier vectors u 

(0) , u 

(1) , . . . , where u 

(0) is a given initial vector and 

u 

(l+1) is updated from u 

( l ) by the following formula: 

u 

(l+1) 
i 

← max 

{
u 

(l) 
i 

+ λ
ˆ z (x ∗, w ) − z LR (u 

(l) ) 

‖ g(u 

(l) ) ‖ 

2 
g i (u 

(l) ) , 0 

}
, i ∈ M, (7) 
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