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a b s t r a c t 

This paper studies statistical properties of empirical (sample) estimates of the buffered probability of 

exceedance (bPOE). The estimation procedure is based on one dimensional minimization representation 

of the bPOE. Convergence rates and asymptotic properties of the suggested estimation procedures are 

investigated. Theoretical predictions are validated with numerical experiments, including a special case of 

exponential distribution, and a study proposing bPOE modification of minimum volume ellipsoid problem. 
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1. Introduction 

For a given probability distribution of losses and a threshold 

value, Probability of Exceedance (POE), is defined as the proba- 

bility that the random variable of loss exceeds the threshold. 

This is a natural measure of uncertainty in losses. The POE is 

very popular in various engineering applications. For instance, 

nuclear engineering considers probability that radiation release 

will exceed specified level, while structural reliability analysis 

considers probability that load exceeds some threshold. Although 

POE is included in government regulations, it has some major 

shortcomings. From a conceptual point of view, the threshold 

in POE provides a low bound on tail outcomes exceeding this 

threshold. However, POE does not provide information about the 

magnitude of these outcomes. In other words, POE is capable of 

registering an exceeding outcome, but incapable of measuring its 

impact on the system. Also POE has troublesome mathematical 

properties for discretely distributed random variables, which are 

typically obtained from sample data. For these variables, POE is 

discontinuous with respect to the threshold, which prevents using 

standard sensitivity analysis based on derivatives. In addition, POE 
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is difficult to optimize because optimization problems for POE 

are usually reduced to large-scale Mixed-Integer programming 

involving binary variables, a problem that may be hard to solve. 

Buffered Probability of Exceedance (bPOE) for a random variable 

is a counterpart of the POE. The notion of bPOE was introduced 

and studied in Mafusalov and Uryasev (2014) and in Norton and 

Uryasev (2014) . For a specified threshold, bPOE equals the prob- 

ability of an upper tail of the distribution, such that the average 

of this tail coincides with the threshold. There is a similarity be- 

tween POE and bPOE: the values of bPOE and POE are bounded be- 

tween zero and one, and, for a given random variable and varying 

threshold, decrease with the threshold increase. However, bPOE is 

an upper bound for POE because it includes all outcomes exceed- 

ing the threshold, as well as some outcomes below the threshold. 

The outcomes below the threshold form the so called buffer, there- 

fore, bPOE is a buffered POE. In that sense, the estimate of loss un- 

certainty given by bPOE is more conservative then the one given by 

POE. 

The tail averages for probability distributions were introduced 

by Rockafellar and Uryasev (20 0 0) by employing the notion of 

Conditional Value-at-Risk ( CVaR ). Specifically, CVaR 1 −α defines av- 

erage in the upper α-tail of a probability distribution. Therefore, 

bPOE for a random variable X at a threshold x ∈ R equals α such 

that 

CVaR 1 −α(X ) = x. 

In this sense it is said that bPOE is an inverse function of CVaR . 

Some attractive mathematical properties hold for bPOE. It is con- 

tinuous in threshold x (maybe except at one point) and quasi- 

convex in X . Furthermore, it was proved that bPOE is the tight- 

est upper bound for POE among functions consistent with convex 
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stochastic dominance, see Section 3.4 in Mafusalov and Uryasev 

(2014) . One way to interpret this result is that when decision mak- 

ing with POE criterion is preferred, but also the decision maker is 

risk averse, then bPOE provides the closest suitable criterion. More- 

over, a problem of bPOE minimization can be reduced to convex 

and even linear programming. 

Mafusalov and Uryasev (2014) provide a detailed description of 

mathematical properties of bPOE and various optimization prob- 

lem statements. When it comes to formulating optimization prob- 

lems, the connection of bPOE and CVaR provides additional in- 

sights. In particular, CVaR and bPOE level constraints are equiv- 

alent. Furthermore, using CVaR or bPOE as objective leads to two 

parametric optimization problem families, and these families, with 

minor exceptions, share frontiers of optimal solutions. That is, 

CVaR minimization solution is not found directly from a single 

bPOE minimization solution, but rather it is found from a collec- 

tion of solutions, and vice versa. 

Given the above connections, it might seem that introduction 

of bPOE in optimization is redundant. However, this is only true 

when needs of decision maker require establishing the whole fron- 

tier of CVaR /bPOE optimal solutions by solving multiple (and, in 

general, infinitely many) optimization problems. Not all practical 

problems possess the luxury of investigating entire solution fron- 

tiers prior to making a decision. On the contrary, oftentimes com- 

putational resources are sufficient for solving a single optimization 

problem. Then, a choice between bPOE and CVaR comes from a 

choice of parameter type, which should be dictated by the nature 

of the problem or the motivation of decision maker. That is, some 

applications relate best to a specified fraction of worst cases, then 

CVaR objective is used; other applications relate best to a specific 

loss value threshold, then bPOE is used. 

The bPOE concept is an extension of the Buffered Failure Proba- 

bility suggested by Rockafellar (2009) and explored by Rockafellar 

and Royset (2010) . The connection is such that buffered failure 

probability equals bPOE at zero threshold value. Buffered failure 

probability is built to be aligned with failure probability , defined 

as the probability that system fails, which happens when a corre- 

sponding random variable takes a positive value. 

This paper studies statistical properties of empirical (sample) 

estimates of bPOE. The estimators are based on one-dimension 

minimization representation of bPOE suggested in Mafusalov and 

Uryasev (2014) and in Norton and Uryasev (2014) . In particular, the 

asymptotic convergence of the suggested estimators is studied. 

This paper is organised as follows. Section 2 formally discusses 

bPOE and some of its properties, introduces necessary notations, 

and proves results on bias, asymptotical variance, and convergence 

for a sample estimate of bPOE. Section 3 discusses approaches, 

including the importance sampling method, for estimating bPOE 

in case of rare events. The theoretical results of Sections 2 , 3 are 

validated with numerical experiments in Section 4 , where a spe- 

cial case of exponential distribution is considered. Convergence 

properties for optimal solutions and optimal values for bPOE 

minimization problem are derived in Section 5 . A modification 

of minimum volume ellipsoid (MVE) problem is considered in 

Section 6 . There, instead of minimizing a fraction of non-covered 

samples under a covering ellipsoid volume constraint, it is pro- 

posed to minimize bPOE with the same constraint. The resulting 

problem is convex, and hence can be efficiently solved. In a case 

of true sample generating distribution being elliptical, solutions 

for POE and bPOE minimization coincide. Theoretical results on 

optimal solution and value convergence are validated for the con- 

sidered bPOE-modification of the MVE problem. This approach is 

closely related and is alternative to the conditional MVE by Gotoh 

and Takeda (2006, 2008) . 

2. Statistical properties of buffered probability estimates 

For α ∈ [0, 1) Conditional Value-at-Risk (also called Average 

Value-at-Risk, Expected Shortfall and Expected Tail Loss) of a ran- 

dom variable X is defined as 3 

CVaR α(X ) := inf 
t∈ R 

{
t + (1 − α) −1 E [ X − t] + 

}
. (2.1) 

Here and further, we assume that E | X| < ∞ , and hence the ex- 

pectation in (2.1) is well defined and finite valued. For α = 0 , 

CVaR 0 (X ) = E [ X] and CVaR α(X ) tends to the essential supremum 

4 

of X as α↑ 1, so we define CVaR 1 (X ) := ess sup (X ) . Let F X (x ) := 

Prob (X ≤ x ) be the cumulative distribution function (CDF) of X 

and 

q −α (X ) := inf { t : F X (x ) ≥ α} , q + α (X ) := sup { t : F X (x ) ≤ α} , 
be the left side and right side quantiles of X . If q −α (X ) = q + α (X ) 

we simply denote it by q α( X ). It is well known that for α ∈ (0, 1) 

the minimum in the right hand side of (2.1) is attained for any 

t ∈ [ q −α (X ) , q + α (X )] . 

Denote q̄ α(X ) := CVaR α(X ) . For x ∈ R , consider the equation 

x = CVaR α(X ) , (2.2) 

with respect to α ∈ [0, 1]. It follows from the representation 

CVaR α(X ) = 

1 

1 − α

∫ 1 

α
q −τ ( X ) dτ, (2.3) 

that CVaR α(X ) is continuous and monotonically increasing in α ∈ 

[0 , 1 − κ ] , where κ := Prob { X = ess sup (X ) } . Hence Eq. (2.2) has 

unique solution α = q̄ −1 
x (X ) for E [ X] ≤ x < ess sup (X ) . The buffered 

probability of exceedance of a random variable X is defined as 

p̄ x (X ) := 

{ 

1 − q̄ −1 
x (X ) if E [ X ] < x < ess sup (X ) , 

1 if x ≤ E [ X ] , 
0 otherwise . 

(2.4) 

That is, 

CVaR 1 −p̄ x (X ) (X ) = x, when E [ X ] ≤ x < ess sup (X ) . 

Consider the following representation of the buffered probabil- 

ity of exceedance of a random variable X (cf. Mafusalov & Uryasev, 

2014 , Proposition 1): 

p̄ x (X ) = 

{
inf a ≥0 E [ a (X − x ) + 1] + if x < ess sup (X ) , 
0 if x ≥ ess sup (X ) . 

(2.5) 

Consider 

�(a, X ) := [ a (X − x ) + 1] + and ψ(a ) := E [�(a, X )] . (2.6) 

Note that �( a , X ) and hence ψ( a ) are convex functions of a . For 

E [ X] < x < ess sup (X ) the set of minimizers arg min a ≥0 ψ(a ) forms 

a closed interval [ a 1 , a 2 ], where 

a 1 = 1 / (x − q −α (X )) and a 2 = 1 / (x − q + α (X )) , (2.7) 

with α defined by Eq. (2.2) . In particular if the quantile q α( X ) is 

unique, i.e., q α(X ) = q −α (X ) = q + α (X ) , then 

ā = 1 / (x − q α(X )) (2.8) 

is the unique minimizer of the right hand side of (2.5) . 

For α ∈ (0, 1) we have that CVaR α(X ) > q −α (X ) , and hence the 

numbers a 1 and a 2 are positive when E [ X] < x . When x < E [ X] , 

the minimizer in (2.5) is ā = 0 , and p̄ x (X ) = 1 . When x < ess sup( X ) 

we have that X < x w.p.1, and hence inf a ≥0 ψ(a ) = 0 = p̄ x (X ) . When 

x = ess sup (X ) , 

inf 
a ≥0 

ψ(a ) = Prob (X = x ) , (2.9) 

3 We use notation [ a ] + := max { 0 , a } for a ∈ R . 
4 The essential supremum ess sup( X ) can be + ∞ if the random variable X is un- 

bounded. 

Please cite this article as: A. Mafusalov et al., Estimation and asymptotics for buffered probability of exceedance, European Journal of 

Operational Research (2018), https://doi.org/10.1016/j.ejor.2018.01.021 

https://doi.org/10.1016/j.ejor.2018.01.021


Download English Version:

https://daneshyari.com/en/article/6894521

Download Persian Version:

https://daneshyari.com/article/6894521

Daneshyari.com

https://daneshyari.com/en/article/6894521
https://daneshyari.com/article/6894521
https://daneshyari.com

