Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Stochastics and Statistics

Stochastic decomposition applied to large-scale hydro valleys management

P. Carpentier^a, J.-Ph. Chancelier^b, V. Leclère^{b,*}, F. Pacaud^{c,b}

^a UMA, ENSTA ParisTech, Université Paris-Saclay, 828 bd des Maréchaux, Palaiseau cedex 91762, France ^b CERMICS (ENPC), Université Paris-Est, Marne-la-Vallée F-77455, France ^c Efficacity, 14-20 Boulevard Newton, Marne-la-Vallée F-77455, France

ARTICLE INFO

Article history: Received 3 July 2017 Accepted 11 May 2018 Available online 16 May 2018

Keywords: Stochastic Programming

Discrete time stochastic optimal control Decomposition methods Dynamic programming Energy management

ABSTRACT

We are interested in optimally controlling a discrete time dynamical system that can be influenced by exogenous uncertainties. This is generally called a Stochastic Optimal Control (SOC) problem and the Dynamic Programming (DP) principle is one of the standard ways of solving it. Unfortunately, DP faces the so-called curse of dimensionality: the complexity of solving DP equations grows exponentially with the dimension of the variable that is sufficient to take optimal decisions (the so-called state variable). For a large class of SOC problems, which includes important practical applications in energy management, we propose an original way of obtaining near optimal controls. The algorithm we introduce is based on Lagrangian relaxation, of which the application to decomposition is well-known in the deterministic framework. However, its application to such closed-loop problems is not straightforward and an additional statistical approximation concerning the dual process is needed. The resulting methodology is called Dual Approximate Dynamic Programming (DADP). We briefly present DADP, give interpretations and enlighten the error induced by the approximation. The paper is mainly devoted to applying DADP to the management of large hydro valleys. The modeling of such systems is presented, as well as the practical implementation of the methodology. Numerical results are provided on several valleys, and we compare our approach with the state of the art SDDP method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Large-scale systems and energy applications

Consider a controlled dynamical system over a discrete and finite time horizon. This system may be influenced by exogenous noises that affect its behavior. Assume that, at every instant *t*, the decision maker designs a control based on all the observations of noises available up to time t. We are thus looking for strategies (or policies), that is, feedback functions that map every instant and every possible history of the system to a decision to be made.

We can find typical applications in the field of energy management. Consider a power producer that owns a certain number of power units. Each unit has its own local characteristics such as physical constraints that restrain the set of feasible decisions, and induces a production cost or a revenue. The power producer

* Corresponding author.

E-mail addresses: pierre.carpentier@ensta-paristech.fr

control the power units so that an overall goal is met. A classical example is the so-called unit commitment problem (see Takriti, Birge, & Long, 1996) where the producer has to satisfy a global power demand at every instant. The power demand, as well as other parameters such as unit breakdowns, are random. The producer is looking for strategies that minimize the overall expected production cost, over a given time horizon. Another application, which is considered in this paper, is the management of a largescale hydro valley: here the power producer manages a cascade of dams, and maximizes the revenue obtained by selling the energy produced by turbinating the water inside the dams. Both natural inflows in water reservoirs and energy prices are random. In all these problems, the number of power units and the number of time steps are usually large (see de Matos, Philpott, & Finardi, 2015).

1.2. Standard resolution methods

One classical approach when dealing with stochastic dynamic optimization problems is to discretize the random inputs of the problem using a scenario tree. Such an approach has been

⁽P. Carpentier), jpc@cermics.enpc.fr (J.-Ph. Chancelier), vincent.leclere@enpc.fr, vincent.leclere@cermics.enpc.fr (V. Leclère), f.pacaud@efficacity.com (F. Pacaud).

widely studied within the stochastic programming community (see Heitsch & Römisch, 2009; Shapiro, Dentcheva, & Ruszczyński, 2009), and used to model and solve energy problems, e.g. by Pflug and Pichler (2014). One of the advantages of such a technique is that, as soon as the scenario tree is drawn, the derived problem can be treated by classical mathematical programming techniques. Thus, a number of decomposition methodologies have been proposed (see for instance Carpentier, Cohen, Culioli, & Renaud, 1996; Rockafellar & Wets, 1991; Ruszczyński, 1997, Ruszczyński & Shapiro, 2003, Chap. 3) and applied to energy planning problems (see Bacaud, Lemaréchal, Renaud, & Sagastizábal, 2001). Ways to combine the discretization of the expected value together with the discretization of information in a general setting have been presented in Heitsch, Römisch, and Strugarek (2006), Pflug and Pichler (2014) and Carpentier, Chancelier, Cohen, and De Lara (2015)). However, in a multi-stage setting, this methodology suffers from the drawback that arises with scenario trees: as it was pointed out by Shapiro (2006), the number of scenarios needed to achieve a given accuracy grows exponentially with the number of time steps of the problem.

The other natural approach to solve SOC problems is to rely on the Dynamic Programming (DP) principle (see Bellman, 1957; Puterman, 1994). The core of the DP approach is the definition of a state variable that is, roughly speaking, the variable that, in conjunction with the time variable, is sufficient to take an optimal decision at every instant. It does not have the drawback of the scenario trees concerning the number of time steps since strategies are, in this context, depending on a state variable whose space dimension does not grow with time (usually linked to the number of power units in the case of power management). However, DP suffers from another drawback which is the so-called *curse of dimensionality*: the complexity of solving the DP equation grows exponentially with the state space dimension. Hence, solving the DP equation by brute force is generally intractable when the state space dimension goes beyond several units. In Vezolle, Vialle, and Warin (2009), the authors were able to solve DP on a 10 state variables energy management problem, using parallel computation coupled with adequate data distribution, but the DP limits are around 5 state variables in a straightforward use of the method.

Another popular idea is to represent the value functions (solutions of the DP equation) as a linear combination of a priori chosen basis functions (see Bertsekas & Tsitsiklis, 1996). This approach, called Approximate Dynamic Programming (ADP) has become very popular and the reader is referred to Powell (2011) and Bertsekas (2012) for a precise description of ADP. This approximation drastically reduces the complexity of solving the DP equation. However, in order to be practically efficient, such an approach requires some a priori information about the problem, in order to define a well suited functional subspace. Indeed, there is no systematic means to choose the basis functions and several choices have been proposed in the literature (see Tsitsiklis & Van Roy, 1996).

Last but not least is the popular DP-based method called Stochastic Dual Dynamic Programming (SDDP). Starting with the seminal work of Van Slyke and Wets (1969), the SDDP method has been designed in Pereira and Pinto (1991). It has been widely used in the energy management context and lately regained interest in the Stochastic Programming community (see Shapiro, 2011 and references therein). The idea is to extend Kelley's cutting plane method to the case of multi-stage stochastic problems. Alternatively it can be seen as a multistage Benders (or L-shaped) decomposition method with sampling. It consists of a succession of forward (trajectory computation) and backward (Bellman function refining) passes that ultimately aims at approaching the Bellman function as the supremum of affine hyperplanes (cuts) generated during the backward passes.

1.3. Decomposition approach

When dealing with large-scale optimization problems, the decomposition-coordination approach aims at finding a solution to the original problem by iteratively solving subproblems of smaller dimension. In the deterministic case, several types of decomposition have been proposed (e.g. by prices, by quantities or by interaction prediction) and unified in Cohen (1980) using a general framework called Auxiliary Problem Principle. In the openloop stochastic case, i.e. when controls do not rely on any observation, it is proposed in Cohen and Culioli (1990) to take advantage of both decomposition techniques and stochastic gradient algorithms. The natural extension of these techniques to the closedloop stochastic case (see Barty, Roy, & Strugarek, 2009), i.e. when the control is a function of the available observations, fails to provide decomposed state dependent strategies. Indeed, the optimal strategy of a subproblem depends on the state of the whole system, and not only on the local state.

We recently proposed a way to use price decomposition within the closed-loop stochastic case. The coupling constraints, namely the constraints preventing the problem from being naturally decomposed, are dualized using a Lagrange multiplier (price). At each iteration, the price decomposition algorithm solves each subproblem using the current price, and then uses the solutions to update it. In the stochastic context, the price is a random process whose dynamics is not available, so the subproblems do not in general fall into the Markovian setting. However, in a specific instance of this problem (see Strugarek, 2006), the author exhibited a dynamics for the optimal multiplier and showed that these dynamics were independent from the decision variables. Hence it was possible to come down to the Markovian framework and use DP to solve the subproblems. Following this idea, it is proposed in Barty, Carpentier, and Girardeau (2010) to choose a parameterized dynamics for these multipliers in such a way that solving subproblems using DP becomes possible. While the approach, called Dual Approximate Dynamic Programming (DADP), showed promising results on numerical examples, it suffered from the fact that the induced restrained dual space is non-convex, leading to some numerical instabilities. Moreover, it was not possible to give convergence results for the algorithm. The method has then been improved both from the theoretical and from the practical point of view. The core idea is to replace the current Lagrange multiplier by its conditional expectation with respect to some information process, at every iteration. This information process has to be a priori chosen and adapted to the natural filtration. Moreover, if the information process is driven by a dynamic, the state in each subproblem then consists of the original state augmented by the information process, making the resolution of the subproblem tractable by DP. Interestingly, approximating the multipliers by their conditional expectations is equivalent to solving a relaxed primal problem where the almost-sure coupling constraint has been replaced by its conditional expectation with respect to the information variable, yielding a lower bound of the true optimal cost. Further, the solutions obtained by the DADP algorithm do not necessarily satisfy the initial almost-sure coupling constraint, so we must rely on a heuristic procedure to produce a feasible solution to the original problem.

1.4. Contents of the paper

The main contribution of the paper is to give a practical algorithm aiming at solving large scale stochastic optimal control problems and providing closed-loop strategies. The numerous approximations used in the algorithm, and especially the one allowing for feasible strategies, make difficult to theoretically assess the quality of the solution finally adopted. Nevertheless, numerical implementation shows that the method is promising to solve large scale Download English Version:

https://daneshyari.com/en/article/6894553

Download Persian Version:

https://daneshyari.com/article/6894553

Daneshyari.com