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a b s t r a c t 

We are interested in optimally controlling a discrete time dynamical system that can be influenced by 

exogenous uncertainties. This is generally called a Stochastic Optimal Control (SOC) problem and the Dy- 

namic Programming (DP) principle is one of the standard ways of solving it. Unfortunately, DP faces 

the so-called curse of dimensionality: the complexity of solving DP equations grows exponentially with 

the dimension of the variable that is sufficient to take optimal decisions (the so-called state variable). 

For a large class of SOC problems, which includes important practical applications in energy manage- 

ment, we propose an original way of obtaining near optimal controls. The algorithm we introduce is 

based on Lagrangian relaxation, of which the application to decomposition is well-known in the deter- 

ministic framework. However, its application to such closed-loop problems is not straightforward and an 

additional statistical approximation concerning the dual process is needed. The resulting methodology is 

called Dual Approximate Dynamic Programming (DADP). We briefly present DADP, give interpretations 

and enlighten the error induced by the approximation. The paper is mainly devoted to applying DADP 

to the management of large hydro valleys. The modeling of such systems is presented, as well as the 

practical implementation of the methodology. Numerical results are provided on several valleys, and we 

compare our approach with the state of the art SDDP method. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Large-scale systems and energy applications 

Consider a controlled dynamical system over a discrete and fi- 

nite time horizon. This system may be influenced by exogenous 

noises that affect its behavior. Assume that, at every instant t , the 

decision maker designs a control based on all the observations of 

noises available up to time t . We are thus looking for strategies (or 

policies), that is, feedback functions that map every instant and ev- 

ery possible history of the system to a decision to be made. 

We can find typical applications in the field of energy man- 

agement. Consider a power producer that owns a certain number 

of power units. Each unit has its own local characteristics such 

as physical constraints that restrain the set of feasible decisions, 

and induces a production cost or a revenue. The power producer 
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control the power units so that an overall goal is met. A classi- 

cal example is the so-called unit commitment problem (see Takriti, 

Birge, & Long, 1996 ) where the producer has to satisfy a global 

power demand at every instant. The power demand, as well as 

other parameters such as unit breakdowns, are random. The pro- 

ducer is looking for strategies that minimize the overall expected 

production cost, over a given time horizon. Another application, 

which is considered in this paper, is the management of a large- 

scale hydro valley: here the power producer manages a cascade 

of dams, and maximizes the revenue obtained by selling the en- 

ergy produced by turbinating the water inside the dams. Both nat- 

ural inflows in water reservoirs and energy prices are random. In 

all these problems, the number of power units and the number 

of time steps are usually large (see de Matos, Philpott, & Finardi, 

2015 ). 

1.2. Standard resolution methods 

One classical approach when dealing with stochastic dynamic 

optimization problems is to discretize the random inputs of 

the problem using a scenario tree. Such an approach has been 

https://doi.org/10.1016/j.ejor.2018.05.025 

0377-2217/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.ejor.2018.05.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.05.025&domain=pdf
mailto:pierre.carpentier@ensta-paristech.fr
mailto:jpc@cermics.enpc.fr
mailto:vincent.leclere@enpc.fr
mailto:vincent.leclere@cermics.enpc.fr
mailto:f.pacaud@efficacity.com
https://doi.org/10.1016/j.ejor.2018.05.025


P. Carpentier et al. / European Journal of Operational Research 270 (2018) 1086–1098 1087 

widely studied within the stochastic programming community 

(see Heitsch & Römisch, 2009; Shapiro, Dentcheva, & Ruszczy ́nski, 

2009 ), and used to model and solve energy problems, e.g. by Pflug 

and Pichler (2014) . One of the advantages of such a technique 

is that, as soon as the scenario tree is drawn, the derived prob- 

lem can be treated by classical mathematical programming tech- 

niques. Thus, a number of decomposition methodologies have been 

proposed (see for instance Carpentier, Cohen, Culioli, & Renaud, 

1996; Rockafellar & Wets, 1991; Ruszczy ́nski, 1997, Ruszczy ́nski & 

Shapiro, 2003 , Chap. 3) and applied to energy planning problems 

(see Bacaud, Lemaréchal, Renaud, & Sagastizábal, 2001 ). Ways to 

combine the discretization of the expected value together with the 

discretization of information in a general setting have been pre- 

sented in Heitsch, Römisch, and Strugarek (2006) , Pflug and Pich- 

ler (2014) and Carpentier, Chancelier, Cohen, and De Lara (2015) ). 

However, in a multi-stage setting, this methodology suffers from 

the drawback that arises with scenario trees: as it was pointed out 

by Shapiro (2006) , the number of scenarios needed to achieve a 

given accuracy grows exponentially with the number of time steps 

of the problem. 

The other natural approach to solve SOC problems is to rely 

on the Dynamic Programming (DP) principle (see Bellman, 1957; 

Puterman, 1994 ). The core of the DP approach is the definition 

of a state variable that is, roughly speaking, the variable that, in 

conjunction with the time variable, is sufficient to take an op- 

timal decision at every instant. It does not have the drawback 

of the scenario trees concerning the number of time steps since 

strategies are, in this context, depending on a state variable whose 

space dimension does not grow with time (usually linked to the 

number of power units in the case of power management). How- 

ever, DP suffers from another drawback which is the so-called 

curse of dimensionality : the complexity of solving the DP equation 

grows exponentially with the state space dimension. Hence, solv- 

ing the DP equation by brute force is generally intractable when 

the state space dimension goes beyond several units. In Vezolle, 

Vialle, and Warin (2009) , the authors were able to solve DP on 

a 10 state variables energy management problem, using parallel 

computation coupled with adequate data distribution, but the DP 

limits are around 5 state variables in a straightforward use of the 

method. 

Another popular idea is to represent the value functions (solu- 

tions of the DP equation) as a linear combination of a priori cho- 

sen basis functions (see Bertsekas & Tsitsiklis, 1996 ). This approach, 

called Approximate Dynamic Programming (ADP) has become very 

popular and the reader is referred to Powell (2011) and Bertsekas 

(2012) for a precise description of ADP. This approximation drasti- 

cally reduces the complexity of solving the DP equation. However, 

in order to be practically efficient, such an approach requires some 

a priori information about the problem, in order to define a well 

suited functional subspace. Indeed, there is no systematic means to 

choose the basis functions and several choices have been proposed 

in the literature (see Tsitsiklis & Van Roy, 1996 ). 

Last but not least is the popular DP-based method called 

Stochastic Dual Dynamic Programming (SDDP). Starting with the 

seminal work of Van Slyke and Wets (1969) , the SDDP method has 

been designed in Pereira and Pinto (1991) . It has been widely used 

in the energy management context and lately regained interest 

in the Stochastic Programming community (see Shapiro, 2011 and 

references therein). The idea is to extend Kelley’s cutting plane 

method to the case of multi-stage stochastic problems. Alterna- 

tively it can be seen as a multistage Benders (or L-shaped) de- 

composition method with sampling. It consists of a succession of 

forward (trajectory computation) and backward (Bellman function 

refining) passes that ultimately aims at approaching the Bellman 

function as the supremum of affine hyperplanes (cuts) generated 

during the backward passes. 

1.3. Decomposition approach 

When dealing with large-scale optimization problems, the 

decomposition-coordination approach aims at finding a solution to 

the original problem by iteratively solving subproblems of smaller 

dimension. In the deterministic case, several types of decompo- 

sition have been proposed (e.g. by prices, by quantities or by 

interaction prediction) and unified in Cohen (1980) using a gen- 

eral framework called Auxiliary Problem Principle. In the open- 

loop stochastic case, i.e. when controls do not rely on any obser- 

vation, it is proposed in Cohen and Culioli (1990) to take advan- 

tage of both decomposition techniques and stochastic gradient al- 

gorithms. The natural extension of these techniques to the closed- 

loop stochastic case (see Barty, Roy, & Strugarek, 2009 ), i.e. when 

the control is a function of the available observations, fails to pro- 

vide decomposed state dependent strategies. Indeed, the optimal 

strategy of a subproblem depends on the state of the whole sys- 

tem, and not only on the local state. 

We recently proposed a way to use price decomposition within 

the closed-loop stochastic case. The coupling constraints, namely 

the constraints preventing the problem from being naturally de- 

composed, are dualized using a Lagrange multiplier (price). At each 

iteration, the price decomposition algorithm solves each subprob- 

lem using the current price, and then uses the solutions to update 

it. In the stochastic context, the price is a random process whose 

dynamics is not available, so the subproblems do not in general fall 

into the Markovian setting. However, in a specific instance of this 

problem (see Strugarek, 2006 ), the author exhibited a dynamics for 

the optimal multiplier and showed that these dynamics were in- 

dependent from the decision variables. Hence it was possible to 

come down to the Markovian framework and use DP to solve the 

subproblems. Following this idea, it is proposed in Barty, Carpen- 

tier, and Girardeau (2010) to choose a parameterized dynamics for 

these multipliers in such a way that solving subproblems using DP 

becomes possible. While the approach, called Dual Approximate 

Dynamic Programming (DADP), showed promising results on nu- 

merical examples, it suffered from the fact that the induced re- 

strained dual space is non-convex, leading to some numerical in- 

stabilities. Moreover, it was not possible to give convergence re- 

sults for the algorithm. The method has then been improved both 

from the theoretical and from the practical point of view. The core 

idea is to replace the current Lagrange multiplier by its conditional 

expectation with respect to some information process , at every it- 

eration. This information process has to be a priori chosen and 

adapted to the natural filtration. Moreover, if the information pro- 

cess is driven by a dynamic, the state in each subproblem then 

consists of the original state augmented by the information pro- 

cess, making the resolution of the subproblem tractable by DP. In- 

terestingly, approximating the multipliers by their conditional ex- 

pectations is equivalent to solving a relaxed primal problem where 

the almost-sure coupling constraint has been replaced by its condi- 

tional expectation with respect to the information variable, yield- 

ing a lower bound of the true optimal cost. Further, the solutions 

obtained by the DADP algorithm do not necessarily satisfy the ini- 

tial almost-sure coupling constraint, so we must rely on a heuristic 

procedure to produce a feasible solution to the original problem. 

1.4. Contents of the paper 

The main contribution of the paper is to give a practical algo- 

rithm aiming at solving large scale stochastic optimal control prob- 

lems and providing closed-loop strategies. The numerous approxi- 

mations used in the algorithm, and especially the one allowing for 

feasible strategies, make difficult to theoretically assess the qual- 

ity of the solution finally adopted. Nevertheless, numerical imple- 

mentation shows that the method is promising to solve large scale 
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