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a b s t r a c t

In this study, we improved the variable neighborhood search (VNS) algorithm for solving uncapacitated
multilevel lot-sizing (MLLS) problems. The improvement is twofold. First, we developed an effective local
search method known as the Ancestors Depth-first Traversal Search (ADTS), which can be embedded in
the VNS to significantly improve the solution quality. Second, we proposed a common and efficient
approach for the rapid calculation of the cost change for the VNS and other generate-and-test algorithms.
The new VNS algorithm was tested against 176 benchmark problems of different scales (small, medium,
and large). The experimental results show that the new VNS algorithm outperforms all of the existing
algorithms in the literature for solving uncapacitated MLLS problems because it was able to find all
optimal solutions (100%) for 96 small-sized problems and new best-known solutions for 5 of 40
medium-sized problems and for 30 of 40 large-sized problems.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The multilevel lot-sizing (MLLS) problem addresses how to best
determine the trade-off cost in a production system with the
purpose of satisfying customer demand with a minimum total cost.
The MLLS problem plays an important role in modern production
systems of manufacturing and assembly firms. Many planning
systems, such as Material Request Planning (MRP) and Master
Product Scheduling (MPS), depend heavily on the basic mathemat-
ical model and solution approaches for the MLLS problem. Never-
theless, the MLLS problem was proven to be strongly NP-hard
(Arkin, Joneja, & Roundy, 1989). Optimal solutions to large-sized
problems with complex product structures are notably difficult
to find. In addition, optimal algorithms exist only for small-sized
MLLS problems, and these algorithms include dynamic programming
formulations (Zangwill, 1968, 1969), an assembly–structure-based
method (Crowston & Wagner, 1973), and branch-and-bound algo-
rithms (Afentakis & Gavish, 1986; Afentakis, Gavish, & Kamarkar,
1984). Many heuristic approaches have been developed to solve
the MLLS problem and its variants with near-optimal solutions.
Early studies first applied sequential applications of single-level

lot-sizing models to each component of the product structure
(Veral & LaForge, 1985; Yelle, 1979), and later studies used an
approximate application of multilevel lot-sizing models (Blackburn
& Millen, 1982, 1985; Coleman & McKnew, 1991).

The uncapacitated MLLS acts as a fundamental problem, and its
solution approach could be highly meaningful to many of its ex-
tended versions, including the capacitated MLLS, the MLLS with
time-windowing, and the MLLS with order acceptance. In practice,
many SME firms in China’s electromechanical industry are more
willing to adopt dynamic capability policies because they can im-
prove their capacities during busy seasons with many methods,
such as extra working-time, temporal employment, and rented
machines. Therefore, the uncapacitated MLLS model caters to the
situations of their ERP systems.

Over the past decade, several metaheuristic algorithms have
been developed to solve uncapacitated MLLS problems with com-
plex product structures. It has been reported that these algorithms
are capable of providing highly cost-efficient solutions with a rea-
sonable computing load. Dellaert and Jeunet (2000) and Dellaert,
Jeunet, and Jonard (2000) first presented a hybrid genetic algo-
rithm (HGA) for solving uncapacitated MLLS problems with a gen-
eral product structure and introduced a competitive strategy for
mixing the use of five operators in the evolution of the chromo-
somes from one generation to the next. Homberger (2008) pre-
sented a parallel genetic algorithm (PGA) and an empirical policy
for deme migration (rate, interval, and selection) for the MLLS
problem. These researchers used the power of parallel calculations
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to decentralize the large calculation load over multiple processors
(30 processors were used in their experiments). In addition to
genetic algorithms, other metaheuristic algorithms, such as simu-
lated annealing (SA) algorithms (Homberger, 2010; Tang, 2004),
the particle swarm optimization (PSO) algorithm by Han, Tang,
Kaku, and Mu (2009), the MAX–MIN ant colony optimization
(ACO) system by Pitakaso, Almeder, Doerner, and Hartl (2006,
2007), and the soft optimization approach (SOA) based on segmen-
tation by Kaku and Xu (2006) and Kaku, Li, and Xu (2010), have
been developed for solving uncapacitated MLLS problems.

The variable neighborhood search (VNS) algorithm initiated by
Mladenovic and Hansen (1997) is a top-level methodology for solv-
ing optimization problems. Because its principle is simple and easy
to understand and implement, various VNS-based algorithms have
been successfully applied to many optimization problems (Hansen,
Mladenovic, & Moreno-Perez, 2008a, 2008b, 2010). Mladenovic,
Urosevic, Hanafi, and Ilic (2012) presented a new schema of the
general variable neighborhood search (GVNS), which is an ex-
tended version of the basic VNS that considers multiple neighbor-
hood structures. Labadie, Mansini, Melechovsky, and Calvo (2012)
proposed a VNS procedure based on the idea of exploring, most of
the time, granular instead of complete neighborhoods in order to
improve the algorithms efficiency without loosing effectives. A
brief summarization of recent successful VNS applications can be
found in Mladenovic, Kratica, Kovacevic-Vujcic, and Cangalovic
(2012).

Xiao, Kaku, Zhao, and Zhang (2011a) first developed a VNS-
based algorithm for basic schema and a shift rule to solve small-
and medium-sized MLLS problems; this algorithm performed
better than the HGA in small- and medium-sized problems. Xiao,
Kaku, Zhao, and Zhang (2011b) developed a reduced VNS (RVNS)
combined with six SHAKING techniques to solve large-sized MLLS
problems. The term ‘‘reduced’’ indicates a simplified version of the
classical VNS algorithm because the local search (the most time-
consuming component of VNS) was removed from the basic
scheme. Although RVNS is still a generate-and-test algorithm, it
differs significantly from the single-point stochastic search (SPSS)
algorithm (Jeunet & Jonard, 2005) because it uses a systematic
method to change multiple bits (with a maximum Kmax) in the
incumbent to generate a candidate, whereas the latter changes
only a single bit. In the study conducted by Xiao, Kaku, Zhao, and
Zhang (2012), three indices (i.e., the distance, changing range, and
changing level) were proposed for a neighborhood search based
on which three hypotheses were verified and can be used as com-
mon rules to enhance the performance of any existing generate-
and-test algorithm. Using these three hypotheses, the proposed
iterated neighborhood search (INS) algorithm delivered notably
good performance when tested against 176 benchmark problems.

In our previous research, the neighborhood structure is defined
under a distance-based metric that measures the distance (of two
solutions) using the number of different bits, and another type of
neighborhood structure based on problem decomposition was also
studied in the recent literature (Helber & Sahling, 2010; Lang &
Shen, 2011; Seeanner, Almada-Lobo, & Meyr, 2013). Several
decomposition methods (i.e., product-oriented, time-oriented,
and resource-oriented) combined with fix-and-optimized (or
partial optimization) strategies were adapted to decompose the
original problem into multiple sub-problems in order to restrain
the optimization to a smaller area of the binary variables.

In this paper, we developed an effective local search procedure
known as the Ancestors Depth-first Traversal Search (ADTS) for the
RVNS algorithm such that the RVNS algorithm can be restored to a
standard VNS. Although the ADTS procedure adds a considerable
amount of computing load to the algorithm, we successfully
developed an efficient method (known as trigger) using a new for-
mulation of MLLS problems to rapidly calculate the change in the

objective cost during the neighborhood search process. Thus, the
new VNS algorithm is both effective and efficient in solving MLLS
problems with high-quality solutions and within an acceptable
computing time.

The remainder of this paper is organized as follows. In Section 2,
we describe the new formulation of the MLLS problem. In Section 3,
we detail a local search procedure known as ADTS which was
added to our previously presented RVNS algorithm for effectively
solving the MLLS problem. Section 4 outlines a highly efficient ap-
proach for rapidly calculating the cost variation of the objective
function as the incumbent solution changes. In Section 5, we test
the proposed algorithm on 176 benchmark MLLS problem in-
stances of different scales (small, medium, and large) and compare
its performance with that of existing methods. Finally, Section 6
presents our concluding remarks.

2. Problem formulation and neighborhood definition

The MLLS problem under investigation is considered an unca-
pacitated, discrete-time, multilevel production/inventory system
with a general product structure1 and multiple-end items. We as-
sume that external demands for the end items are known through-
out the planning horizon and that backlog is not allowed. Below,
we present the notations used to model the MLLS problem, which
also can be found in the reports by Dellaert and Jeunet (2000) and
Xiao et al. (2012).

� i: Index of items, i = 1,2, . . . ,m.
� t (and t0): Index of periods, t = 1,2, . . . ,n.
� Hi: Unit inventory holding cost for item i.
� Si: Setup cost for item i.
� dit: External demand for item i in period t.
� Dit: Total demand for item i in period t.
� Cij: Quantity of item i required to produce one unit of item j.
� Ci: The set of immediate successors of item i.
� C�1

i : The set of immediate predecessors of item i.
� li: The lead time required to assemble, manufacture, or purchase

item i.

The decision problem focuses on how to set the production set-
up for all of the items in all of the planning periods such that the
decision variable is an m � n matrix denoted as follows:

� Yit: Binary decision variable addressed to capture the setup cost
for item i in period t.

Depending on the decision variable, two other important vari-
ables are addressed to quickly capture the inventory holding costs.
These can be introduced as follows:

� Pit: The period in which the demands of item i in period t will be
set for production.
� Xit: The production quantity for item i in period t.

The objective function is to minimize the sum of the setup cost
and the inventory holding cost for all of the items over the entire
planning horizon and is denoted by TC (total cost). We extend
the formulation described by Xiao et al. (2012) to cover the exter-
nal demand for non-end items. Thus, the uncapacitated MLLS prob-
lem can be modeled as follows:

1 In a pure assembly structure, each item has multiple immediate predecessors but
at most only one direct successor; in a general structure, each item can have multiple
immediate predecessors and multiple direct successors.
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