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a b s t r a c t

An n-unit system provisioned with a single warm standby is investigated. The individual units are subject
to repairable failures, while the entire system is subject to a nonrepairable failure at some finite but ran-
dom time in the future. System performance measures for systems observed over a time interval of ran-
dom duration are introduced. Two models to compute these system performance measures, one
employing a policy of block replacement, and the other without a block replacement policy, are devel-
oped. Distributional assumptions involving distributions of phase type introduce matrix Laplace transfor-
mations into the calculations of the performance measures. It is shown that these measures are easily
carried out on a laptop computer using Microsoft Excel. A simple economic model is used to illustrate
how the performance measures may be used to determine optimal economic design specifications for
the warm standby.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of systems configured with warm standby compo-
nents as a way to improve system reliability and availability has
been of considerable research interest. The early work on the
analysis of systems with warm standbys was strongly influenced
by three papers. Gnedenko (1965) investigated an n-component
system with one warm standby and repair facility. Under the
assumptions that the operating components and warm standby
had exponential lifetimes and the distribution of time to perform
repair was arbitrary, Gnedenko determined the Laplace transfor-
mation of the distribution of time until first system failure, the
mean time until first system failure, and explored a number of lim-
it theorems. Gopalan (1975) extended this result by assuming a
single operating unit and n � 1 warm standbys with one repair
facility, and constructed the Laplace transformation of system
availability and system reliability. Gopalan applied these results
to the special cases of one and two warm standbys. Subramanian,
Venkatakrishnan, and Kistner (1976) changed Gopalan’s model by
allowing r repair facilities and assumed that the operating system
had an arbitrary life distribution, while the warm standbys had an
exponential distribution of time until failure, and the repair time
distribution was also exponential. By viewing the stochastic
process defined by the number of failed standbys at time t as a
birth-and-death process, they derived a system of equations to
determine the mean time until system failure and system
availability.

The study of systems configured with warm standbys has accel-
erated in recent years. Wang, Lai, and Ke (2004) used the simplifi-
cation of exponential unit lifetimes and repairs to study K out of
M + W systems, where M is the number of operating units and W
is the number of warm standbys. Srinivasan and Subramanian
(2006) considered the case of a three unit system with two warm
standbys having lifetimes with exponential distributions. Under
the assumption that the operating unit’s lifetime and the repair
time had arbitrary distributions, they constructed expressions for
the system reliability and point availability; however,
computational efficiency was a question left for future research.
Papageorgiou and Kokolakis (2010) considered two-unit parallel
systems with multiple warm standbys without the possibility of
unit repair. They determine an expression for system reliability
recursively based on the number of warm standbys. Amari, Pham,
and Misra (2012) examined a k-out-of-n warm standby system
without repair. Under the assumption of exponential unit lifetimes,
they constructed an expression for the distribution of system life-
time as well as several other reliability measures. Eryilmaz (2013)
analyzed a k-out-of-n system without repair equipped with a single
warm standby, and derived an explicit expression for the system
reliability. Additional active research streams which study systems
provisioned with warm standby units include the analysis of gen-
eral coherent systems (Eryilmaz, 2011), k-out-of-n systems (Amari
& Pham, 2010, Eryilmaz, 2013), and other specified system config-
urations (Bulama, Yusuf, & Bala, 2013), the analysis of phased mis-
sions (Levitin, Xing, & Dai, 2013, Mohammad et al., 2013), and the
impacts of dedicated repairmen (Vanderperre & Makhanov, 2013),
multiple warm standbys (Wang, Yen, & Fang, 2012), and imperfect
switching (Yuan & Meng, 2011, Yun & Cha, 2010).
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Two other works warrant special consideration because of the
use of distributions of phase type. Perez-Ocon and Montoro-Cazorla
(2006) assumed a one-unit system with (n � 1) warm standbys,
where the operating unit’s lifetime and the repair time have distri-
butions of phase type and the warm standbys have exponential
lifetimes. By modeling the system as a level-dependent quasi-
birth-and-death process, they were able to show that the system
operational periods and repair periods follow distributions of phase
type, and developed computationally tractable expressions for sys-
tem reliability, availability, and other measures of system perfor-
mance. Ruiz-Castro and Fernandez-Villodre (2012) examined a
one-unit system with (n � 1) warm standbys, where the operating
unit is subject to repairable and nonrepairable failures and warm
standbys are subject to only repairable failures. All distributions of
times until failure as well as the distribution of repair times were as-
sumed to be discrete phase type. A block replacement of the entire
system occurs at the time when all units have experienced a nonre-
pairable failure and removed from the system. Tractable transitory
and stationary characteristics of the system were determined.

The purpose of this paper is to extend the known analytic
results for systems with warm standbys to the case that the sys-
tems under study are subject to both repairable and nonrepairable
failures. Unlike the Ruiz-Castro and Fernandez-Villodre (2012)
investigation, it will be assumed that nonrepairable failures occur
to the system as a whole instead of a single operating unit. Such
a perspective is useful for modeling a variety of practical scenarios;
for example, the nonrepairable failure might represent the end of
the system’s useful life, perhaps resulting from product or process
obsolescence, or the failure of a critical subsystem operating in
series with the system composed of warm standbys. Alternatively,
the exact duration of the mission of the system may not be known
with certainty, and thus the occurrence of a nonrepairable failure
could represent the end of the system’s mission. In all of these
cases, it is of interest to investigate the behavior of the system over
a time period whose duration is described by a probability distri-
bution. The interested reader is referred to the early work by
Bryant and Murphy (1980) using this perspective applied to alter-
nating renewal processes, and by Bryant and Wells (1984) using
this perspective applied to more general systems. The occurrence
of repairable and nonrepairable failures will also redirect our
attention from first system failure and steady state or long run
measures, such as availability, to measures which are more appro-
priate for systems viewed over finite but random time intervals.

1.1. Notation

I Identity matrix
0, 1 Vector of zeros, ones, respectively
X Time until failure of an operating unit, X � F(x) = 1

� e�kx, x P 0, and k > 0
W Time until failure of the unit in standby,

W � F1ðwÞ ¼ 1� e�k1w; w P 0, and k1 > 0
Y Time required to repair a unit, Y � G(y), y P 0
V Time required to perform block replacement,

V � G1(v), v P 0
T Time until a nonrepairable failure, T � H(t), t P 0
T1 Time until the first system failure, T1 � K(t1), t1 P 0
U Accumulated system uptime over the random

interval [0,T], U � J(u), u P 0
~f ðsÞ Scalar-valued Laplace-Stieltjes transformation of

FðxÞ; ~f ðsÞ ¼
R1

0 e�stdFðtÞ
FA Matrix-valued Laplace Stieltjes transformation of

FðxÞ; FA ¼
R1

0 expðAtÞ f ðtÞdt

W Random interval reliability, P{T1 > T}
K Random point availability, P{System is operating at

time T}

The notational convention used throughout this paper is to use
a capital letter to indicate a distribution function and the corre-
sponding lower case letter for the density function if it exists. Thus
F(x) is the distribution function and f ðxÞ ¼ dF

dx is the density func-
tion. The survival function is written as FðxÞ ¼ 1� FðxÞ.

2. Preliminary concepts

2.1. Distributions of phase type

In the sequel, significant attention will be given to continuous
distributions of phase type, or more simply, phase distributions. A
distribution is of phase type if and only if it can be represented as
the distribution of time until absorption in a finite state continu-
ous-time Markov chain in which absorption is certain given any
initial state (Neuts (1981)). Phase distributions are useful for repre-
senting evolutionary processes, such as the degradation of a compo-
nent or the steps required to perform a repair, and are therefore
appropriate for the current investigation. Moreover, phase distribu-
tions are dense in the class of life distributions and include all finite
mixtures of convolutions of Erlang distributions; consequently,
they are a robust assumption about the lifetime of a process under
study. Finally, phase distributions can enhance computational trac-
tability as indicated in the work of Perez-Ocon and Montoro-Cazorla
(2006) and Ruiz-Castro and Fernandez-Villodre (2012).

Let A⁄ be the infinitesimal generator of a continuous-time Mar-
kov chain with k + 1 states, 0, 1, 2, . . ., k, where state 0 is absorbing
for any initial state. Let 0 be a (1 �k) vector of zeros and 1 a (k � 1)
column of ones. A⁄ can be written as

A� ¼
0 0
A0 A

� �
;

where A is a k � k stable matrix with negative diagonal elements
and non-negative off-diagonal elements such that the row sums
are nonpositive, and A0 = �A1. Let a⁄ be the 1 � (k + 1) initial prob-
ability vector of the Markov chain. Then a⁄ = [a0,a], with a0 + a1 = 1.
For notational convenience, it is assumed throughout that a0 = 0.

If H(t) is the distribution function associated with the time until
absorption, then

HðtÞ ¼ 1� a expðAtÞ1; t P 0; ð1Þ

and is absolutely continuous with probability density function

hðtÞ ¼ �aA expðAtÞ1; t P 0: ð2Þ

Since a and A uniquely determine H, H is said to have representation
(a, A).

2.2. Matrix Laplace transformations

Because of the presence of phase distributions, matrix Laplace
transformations will naturally arise in the calculations encoun-
tered in this work. A matrix Laplace transformation (MLT) is a
k � k matrix defined by

FA ¼
Z 1

0
expðAtÞ f ðtÞdt ð3Þ

where f(t) is a density function defined on [0,1), and A is a k � k
stable matrix as described in Section 2.1, (Bryant & Murphy,
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