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a b s t r a c t 

Topological Data Analysis is an emerging field at the intersection of algebraic topology and statistical in- 

ference aimed at describing the shapes objects represented as point cloud data in the multidimensional 

space. Since the range of applications of shape analysis is enormous, new tests have given birth to the 

field of TDA. In this habilitation study three TDA-oriented tests are discussed. A new test based on met- 

ric functions is proposed. A small simulation study among the preceding tests has been employed via 

Monte Carlo simulation. All the mentioned tests in the vignette are activated by real world data within 

educational field. 
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1. Introduction 

In a wide variety of disciplines, it is of great practical impor- 

tance to measure, sketch and compare the shapes between dif- 

ferent objects. Dryden and Mardia [1] defined the shapes of cer- 

tain objects as all the geometric information that remains when 

location, scale and rotational effects are filtered out. If the size in- 

formation is also of interest, then the scale will be omitted from 

the definition. Here the size of the information will be taken into 

consideration. In other words, we can claim that two objects have 

the same shape if by the translation, shifting or rotation opera- 

tions the two objects will coincided, see [2] . The fundamental field 

concerning with studying the geometric properties of the objects 

is topology. Indeed, topology has been present in mathematics for 

quite a long time without anticipating applications to real-world 

applications until the beginning of this century. As, Carlsson in 

[3] proposed his survey article which produced another new area 

of research known as computational topology that enables the re- 

searchers to extract the quantitative and qualitative information 

that describe the point cloud data’s shapes. 

Computational topology is a set of algorithmic methods devel- 

oped to understand topological invariants such as loops and holes 

in high-dimensional data sets. The specialized approach that em- 

ploys the statistical tools to compute and analyze the topological 

features is called TDA. Generally speaking, TDA refers to a collec- 
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tion of methods and tools that enable the researchers for finding 

and studying the topological invariants structure in data. The input 

of these procedures typically takes the form of a point cloud data 

which is usually represented as a large finite dataset sampled from 

a geometrical object in a n-dimensional metric space, possibly with 

some noise. The output is a collection of data summaries and dia- 

grams that are used to estimate the statistical features of the data. 

Lesnick [4] divided TDA tools into two parts: the first one is the 

descriptors TDA which are the procedures that aim at describing, 

summarizing, discovering, and visualizing point cloud data. How- 

ever, the second is TDA inference which uses the probability the- 

ory to investigate or test the statistical features of the sample data 

(e.g. mean, variance…etc.). 

In the last few years, community topology has witnessed im- 

portant progress in supporting complex data analysis. In conse- 

quence, TDA plays a crucial role in a variety of different fields 

range from industry [5] shape classification Chazal et al. in [6, 

7] , clustering and histology images for breast cancer analysis [8] . 

In addition, TDA has received recently much attention by statis- 

ticians which gives a birth to a competitor approach in the data 

mining. For instance, Singh et al in [9] proposed a new classifi- 

cation tool based on simplicial complexes figures called Mapper, 

Kent et al. in [10] introduced k-tree level sets which can be uti- 

lized in the classification and comparison purposes, Turner [11] de- 

fined the means and medians for the persistent homology dia- 

grams, from [12] derived confidence band for the persistence dia- 

gram that allows us to separate topological signal from topological 

noise, Chazal in [13] proposed sub-sampling methods for analyzing 

the shape of sets and functions from point cloud data in the case 

of the sample is too large. 
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The major motivation beyond the present study is to provide a 

review for the three tests based on TDA using for testing the simi- 

larities between the objects. Further, propose a new test based on 

metric functions can be employed for the same purpose. In ad- 

dition, conducting a power comparison study between the tests 

based on TDA and the proposed tests a benchmarking test. This 

article is structured as follows: the next section will give a snap- 

shot of TDA tools. The third section includes all the tests that can 

be employed for testing the closeness between the objects. The fol- 

lowed section is devoted for the Monte Carlo results. The final sec- 

tion presents the results concerned to the real life applications. 

2. Topological Data Analysis 

The general framework of TDA for computing topological fea- 

tures from point cloud data usually contains two necessary steps: 

constructing simplicial complexes and applying TDA techniques on 

the simplicial complexes frequently are the persistent homology, 

barcodes and the persistent landscape. The main textbook for this 

section is Edelsbrunner and Harer [14] . 

A simplicial complex S is a set consisting of a finite collec- 

tion of p-simplices (simple pieces), where a 0-simplex is a ver- 

tex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex 

is a tetrahedron, and so on. In more precise way, the simplicial 

complex divided the space into smaller and topologically simpler 

pieces, which when assembled back together carry the same aggre- 

gate topological information as the original space. These simplices 

should satisfy two conditions. First, for every set σ in S , every non- 

empty subset τ ⊂ σ also belongs in S . For instance, if tetrahedron 

abcd is in S , then the triangles abc, abd, acd, bcd, the edges ab, ac, 

ab and the vertices a, b, c, d are also in S . Second, two p-simplices 

are either empty or they intersect in a lower dimensional simplex. 

In order to obtain simplicial complex sets, Vietoris–Rips filter is ad- 

vocated in this study. 

Homology is a tool from algebraic topology that measures the 

features of a topological space such as an annulus, sphere, torus, 

or more complicated surface. In particular, homology can distin- 

guish these spaces from one another by quantifying their con- 

nected components, loops, voids, and so forth. One interesting 

feather associated with the homology group is the Betti num- 

bers, as they provide meaningful information about the complex. 

Roughly speaking, the p th Betti number βp is the number of p th 

dimensional independent holes in the homology groups, so that 

β0 is the number of connectedcomponents, β1 is the number of 

loops, β2 is the number of enclosed voids and so on. Persistent 

homology is the primary algebraic topology tool was developed 

by Edelsbrunner et al. [29] used in the TDA methods in order to 

track long persist features. It provides a way to measure the lifes- 

pan of a topological feature, which is the persistence of the feature, 

whereas short-lived features may be ignored as noise. 

A convenient way to visualize persistent homology is through 

a graphical representation called a barcode which can summarize 

the information encoded in the persistence diagram in a different 

vision. There is a distinct barcode for each homology space from 

which we infer the Betti number. In other words, the length of ev- 

ery line in the Barcodes diagrams refers to the distance between 

the time of death j and the time of born i , the number of the lines 

associated to dimension zero equals to β0 , while the number of 

the lines associated to dimension one equals to β1 and so on. 

Another graphical way that can summarize the information 

contained in the persistent homology diagram is the persistent 

Landscape proposed by Bubenik [15] . Persistent Landscape can be 

considered as a rotated version of barcode plot. The main ad- 

vantage of the Persistent Landscapes is it allows us to calculate 

and summarize the data with the standard statistics indicators e.g. 

means, median, variance…etc, as opposite to either persistence di- 

agram or barcode plot. To define the landscape, construct a trian- 

gle whose base corresponds to a persistence intervals and the top 

vertex by tenting each persistence point using the following func- 

tion: 

�s ( ε ) = 
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]
0 otherwise 

where ɛ is the filtered simplicial complex time and s takes 1 to n, 

n is the number of the points in the persistent diagram. It should 

be noted that �s ( ɛ ) obtained separately to each p -dimension. For- 

mally, λs ( ɛ ) is the s th largest value of �s ( ɛ ) taken into considera- 

tion the homology dimension. When s = 1 , of course, λs ( ɛ ) can be 

interpreted as the maximal possible distance of an interval cen- 

tered about ɛ . Fig. 1 applied all the TDA’s tools, mentioned above, 

to a sample drawn from tours. 

3. Statistical shape analysis 

Shape analysis is an active subject of academic research in the 

both of mathematical and applied sciences. It has extensive appli- 

cations in many fields as it is great practical importance to carry 

out hypotheses tests that distinguish between objects under uncer- 

tainty. A plenty of tests have been suggested in the literature (see 

[2] ). However, three different tests will be focused in this context. 

Assume that you have K-objects and that we would like to test the 

null hypothesis that all the objects are similar and have the same 

shape versus the alternative hypothesis that states that at least one 

object differs than the others. This can be achieved by the follow- 

ing tests which are so called k-sample tests. 

3.1. Statistical inference using persistent homology 

Gamble in [2] produced a new test which can be depend- 

able for testing the similarity between two persistent homol- 

ogy diagrams using Wasserstein distance. Robinson and Turner in 

[16] generalized the test of Gamble in the multivariate case; as if 

it is required to test between two sets of persistent homology. In 

the present paper, it will generalize from [2] , test into K samples. 

The test statistic that can be utilized to test between K persistent 

homology diagrams P in the light of Gamble and Heo may be ex- 

pressed as: 

T R = 

1 (
k 
2 

) k ∑ 

i =2 

i −1 ∑ 

j=1 

W 

(
P i , P j 

)

where W ( P i , P j ) is the Wasserstein distance between P i and P j . Obvi- 

ously, T R can be considered as the average of all pair wise Wasser- 

stein distances. Robinson in [2] recommended using the Hungarian 

algorithm to compute the Wasserstein distance. 

Given p 1 , 1 , p 2 , 1 . . . p n 1 , 1 
and p 1 , 2 , p 2 , 2 . . . p n 2 , 2 

are the points 

corresponding to P 1 and P 2 respectively.The Hungarian algorithm 

required, first, that the two persistent homology have to be the 

same size, this is done via adding n 2 points to the first sample 

and n 1 points to the second sample, which yields we have n 1 + n 2 

points for the both persistent homology. The added points are copy 

of a diagonal that are the perpendicular distances. Then, construct- 

ing the cost matrix where its entries are the squared Euclidean dis- 

tances. Next, match every row with the optimum column. 1 Finally, 

the Wasserstein distance is the sum up for the optimum distances, 

1 The optimum column means that the column that has least distance. 
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