The corona between cycles and paths

S. Nada ${ }^{\text {a,* }}$, A. Elrokh ${ }^{\text {a }}$, E.A. Elsakhawi ${ }^{\text {b }}$, D.E. Sabra ${ }^{\text {b }}$
a Dept. of Math., Faculty of Science, Menoyfia University, Shebeen Elkom, Egypt
${ }^{\mathrm{b}}$ Dept. of Math., Faculty of Science, Ain Shams University, Cairo, Egypt

A R T I C L E I N F O

Article history:

Received 3 April 2016
Accepted 23 August 2016
Available online xxx

MSC:

05C78
05 C 12
05C15
Keywords:
Graph labeling
Corona

Abstract

A graph is said to be cordial if it has a $0-1$ labeling that satisfies certain properties. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} (with n_{1} vertices and m_{1} edges) and G_{2} (with n_{2} vertices and m_{2} edges) is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2}, and then joining the i th vertex of G_{1} with an edge to every vertex in the i th copy of G_{2}. In this paper we investigate the cordiality of the corona between cycles C_{n} and paths P_{n}, namely $C_{n} \odot P_{m}$.

© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

It is known that graph theory and its branches have become interest topics for almost all fields of mathematics and also other area of science such as chemistry, biology, physics, communication, economics, engineering, operations research, and especially computer science.

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. There are many contributions and different kinds of labeling [1-9].

Two of the most important types of labeling are called graceful and harmonious. Graceful labeling was introduced independently by Rosa [10] in 1966 and Golomb [11] in 1972, while harmonious labeling were first studied by Graham and Sloane [12] in 1980. A third important type of labeling, which contains aspects of both of the other two, is called cordial and was introduced by Cahit [1] in 1990. Whereas the label of an edge $v w$ for graceful and harmonious labeling is given respectively by $|f(v)-f(w)|$ and $(f(v)+$ $f(w)$) (modulo the number of edges), cordial labeling use only labels 0 and 1 and the induced edge label $(f(v)+f(w))(\bmod 2)$, which of course equals $|f(v)-f(w)|$. Because arithmetic modulo 2 is an integral part of computer science, cordial labelings have close connections with that field. An excellent reference on this subject is the survey by Gallian [13].

More precisely, cordial graphs are defined as follows: Let $G=$ (V, E) be a graph, let $f: V \rightarrow\{0,1\}$ be a labeling of its ver-

[^0]tices, and let $f^{*}: E \rightarrow\{0,1\}$ is the extension of f to the edges of G by the formula $f^{*}(v w)=(f(v)+f(w))(\bmod 2)$. Thus, for any edge $e=u v, f^{*}(e)=0$ if its two vertices have the same label and $f^{*}(e)=1$ if they have different labels. Let v_{0} and v_{1} be the numbers of vertices labeled 0 and 1 respectively, and let e_{0} and e_{1} be the corresponding numbers of edges. Such a labeling is called cordial if both $\left|v_{0}-v_{1}\right| \leq 1$ and $\left|e_{0}-e_{1}\right| \leq 1$ hold. A graph is called cordial if it has a cordial labeling.

Suppose that $G=(V, E)$ is a graph, where V is the set of its vertices and E is the set of its edges. Throughout, it is assumed G is connected, finite, simple and undirected.

The corona $G_{1} \odot G_{2}$ of two graphs G_{1} (with n_{1} vertices and m_{1} edges) and G_{2} (with n_{2} vertices and m_{2} edges) is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2}, and then joining the i th vertex of G_{1} with an edge to every vertex in the i th copy of G_{2} [14]. It follows from the definition of the corona that $G_{1} \odot G_{2}$ has $n_{1}+n_{1} n_{2}$ vertices and $m_{1}+n_{1} m_{2}+n_{1} n_{2}$ edges. It is easy to see that $G_{1} \odot G_{2}$ is not in general isomorphic to $G_{2} \odot G_{1}$. In [15], the corona of $P_{n} \odot C_{m}$ has been studied and proved that $P_{n} \odot C_{m}$ is cordial if and only if $(n, m) \neq(1,3)(\bmod 4)$. In this paper we show that the corona $C_{n} \odot P_{m}$ is cordial for all $n \geq 3$ and $m \geq 1$.

2. Terminology and notation

A path with n vertices and $n-1$ edges is denoted by P_{n}, and a cycle with n vertices and n edges is denoted by C_{n}. Given a cycle or a path with $4 r$ vertices, we let $L_{4 r}$ denote the labeling 0011 ... 0011 (repeated r times). In most cases, we then modify this by adding symbols at one end or the other (or both); thus $010 L_{4 r}$ denotes the labeling 0100011 ... 0011 of the cycle

$$
x_{0}=a_{1}=2, x_{1}=a_{0}=1
$$

Fig. 1. .

$$
b_{0}=y_{1}=b_{1}=2, y_{0}=3 \quad y_{0}^{\prime}=b_{0}^{\prime}=b_{1}^{\prime}=2, y_{1}^{\prime}=3 \quad z_{0}=c_{1}=c_{0}=2, z_{1}=3
$$

$$
v_{0}-v_{1}=e_{0}-e_{1}=0
$$

Fig. 2. .

$$
\begin{array}{cc}
b_{0}=3, y_{1}=b_{1}=2, y_{0}=4 \quad & y_{0}^{\prime}=b_{1}^{\prime}=2, b_{0}^{\prime}=3, y_{1}^{\prime}=4 \quad z_{0}=z_{1}=3, c_{0}=0, c_{1}=5 \\
& v_{0}-v_{1}=1, e_{0}-e_{1}=0
\end{array}
$$

Fig. 3. .
$C_{4 r+3}$ (or the path $P_{4 r+3}$) when $r \geq 1$ and 010 when $r=0$. Similarly, $L_{4 r} 01$ is the labeling 0011 ... 001101 of the cycle $C_{4 r+2}$ (or the path $P_{4 r+2}$) when $r \geq 1$ and 01 when $r=0$, and so on. We write M_{r} for the labeling $01 \ldots 01$ if r is even and $01 \ldots 010$ if r is odd, for example, $M_{6}=010101$ and $M_{7}=0101010$. Also, we write 0_{r} for the labeling $0 \ldots 0$ (rtimes) and 1_{r} for the labeling $1 \ldots 1$ (rtimes) [3-8]. If G and H are two graphs, where G has n vertices, the labeling of the corona $G \odot H$ is often denoted by $\left[A: B_{1}, B_{2}, B_{3}, \ldots, B_{n}\right]$, where A is the labeling of the n vertices of G, and $B_{i}, 1 \leq i \leq n$ is the labeling of the vertices of the copy of H that is connected to the i th vertex of G [2]. For a given labeling of the corona $G \odot H$, we denote v_{i} and $e_{i}(i=0,1)$ to represent the numbers of vertices and edges, respectively, labeled by i. Let us denote x_{i} and a_{i} to be the numbers of vertices and edges labeled by i for the graph G. Also, we let y_{i} and b_{i} be those for H, which are connected to the vertices labeled 0 of G.

Likewise, let y_{i}^{\prime} and b_{i}^{\prime} be those for H, which are connected to the vertices labeled 1 of G. It is easy to verify that $v_{0}=x_{0}+x_{0} y_{0}+$ $x_{1} y_{0}^{\prime}, v_{1}=x_{1}+x_{0} y_{1}+x_{1} y_{1}^{\prime}, e_{0}=a_{0}+x_{0} b_{0}+x_{1} b_{0}^{\prime}+x_{0} y_{0}+x_{1} y_{1}^{\prime}$ and $e_{1}=a_{1}+x_{0} b_{1}+x_{1} b_{1}^{\prime}+x_{0}\left(x_{0} y_{1}\right)+x_{1} y_{0}^{\prime}$. Thus $v_{0}-v_{1}=\left(x_{0}-x_{1}\right)+$ $x_{0}\left(y_{0}-y_{1}\right)+x_{1}\left(y_{0}^{\prime}-y_{1}^{\prime}\right)$ and $e_{0}-e_{1}=\left(a_{0}-a_{1}\right)+x_{0}\left(b_{0}-b_{1}\right)+$ $x_{1}\left(b_{0}^{\prime}-b_{1}^{\prime}\right)+x_{0}\left(y_{0}-y_{1}\right)-x_{1}\left(y_{0}^{\prime}-y_{1}^{\prime}\right)$. In particular, if we have only one labeling for all copies of H, i.e., $y_{i}=y_{i}^{\prime}$ and $b_{i}=b_{i}^{\prime}$, then $v_{0}=x_{0}+n y_{0}, v_{1}=x_{1}+n y_{1}, e_{0}=a_{0}+n b_{0}+x_{0} y_{0}+x_{1} y_{1}$ and $e_{1}=a_{1}+n b_{1}+x_{0} y_{1}+x_{1} y_{0}$. Thus $v_{0}-v_{1}=\left(x_{0}-x_{1}\right)+n\left(y_{0}-y_{1}\right)$ and $e_{0}-e_{1}=\left(a_{0}-a_{1}\right)+n\left(b_{0}-b_{1}\right)+\left(x_{0}-x_{1}\right)\left(y_{0}-y_{1}\right)$, where n is the order of G.

3. Corona between cycles and paths

In this section, we show that the corona $C_{n} \odot P_{m}$ is cordial for all $n \geq 3$ and $m \geq 1$.

https://daneshyari.com/en/article/6898961

Download Persian Version:

https://daneshyari.com/article/6898961

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: shokrynada@yahoo.com (S. Nada), el-rokh@excite.com (A. Elrokh).

