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a b s t r a c t 

Current paper aims to introduce new types of compactness in terms of notion of K -cover in topologi- 

cal games with perfect information of Telgársky,namely, �∗( T i )-compactness, �∗( T j )-compactness, �∗( T i )- 

compactness and �∗( T j )-compactness in the realm of Hausdörff spaces. We give a necessary and sufficient 

condition for players to have a winning strategy in these types of compactness. Furthermore, various 

characterizations of these concepts are achieved. 
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1. Introduction and preliminaries 

Compactness in game theory plays an essential role when gen- 

eral topology was developed. Many authors defined and studied 

some types of compactness through conceps of game theory. 

Berge [1] has introduced and studied the notion of topological 

games with perfect information. The concept of topological games 

G (K, X ) was introduced and studied by Telgársky [2] . He defined 

and investigated spaces through topological games as C -scattered 

and paracompact spaces [3] , compact-like spaces [4] . Galvin et al. 

( [5,6] )introduced some stationary strategies in topological games. 

They studied infinite games in [7] . Junnila et al. [8] studied closure- 

preserving covers by small sets. Banakh and Zdomskyy [9] intro- 

duced and studied some separation properties say C-separation 

properties between the σ -compactness and Hurewicz property. 

Tkachuk in [10] discussed Eberlein compact and weakly Eberlein 

compact spaces from the view of functional analysis and C p -theory. 

Paulo Klinger Monteiro and Frank H. Page Jr [11] introduced a 

condition, uniform payoff security, for games with compact Haus- 

dorff strategy spaces and payoffs bounded and measurable in play- 

ers strategies. Bennett, Lutzer and Reedc [12] proved a Moore 

space the equivalence between domain representability; subcom- 

pactness; the existence of a winning strategy for player α( = the 

nonempty player) in the strong Choquet game Ch ( X ); the existence 
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of a stationary winning strategy for player α in Ch ( X ); and Rudin 

completeness. Scheepers and Tsaban [13] extended studies of se- 

lection principles for families of open covers of sets of real num- 

bers to include families of countable Borel covers. They proved 

that some of the classes which were different for open covers 

are equal for Borel covers. Cao et al. [14] studied some two per- 

son games and some topological properties defined by them. Zoroa 

et al. [15] studied games in which the strategic situation is devel- 

oped on a lattice. The main characteristic of these games is that 

the points in each column of the lattice have a specific associated 

weight which directly affects the payoff function. 

In this paper, we introduce and study new types of com- 

pactness say �∗( T i )-compactness, �∗( T j )-compactness, �∗( T i )- 

compactness and �∗( T j )-compactness in the realm of Hausdorff

spaces. The paper based on an infinite topological game. In this 

game players I and II alternately choose points and their open 

neighborhoods respectively. I wins if and only if the moves of II 

cover the space. All spaces are assumed to be T 1 . In particular, 

compact spaces and paracompact spaces are assumed to be Haus- 

dorff or T 2 . 

2. Some basic definitions 

A topological space [16] is a pair ( X, τ ) consisting of a set X 

and family τ of subsets of X satisfying X, φ ∈ τ , τ is closed under 

arbitrary union and closed under finite intersection. Each member 

in τ is said to be an open set. The complement of each open set 
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is a closed set. 2 X will be denote to the class of all closed sets 

in a space X . K will be denote to a class of topological spaces 

which are hereditary with respect to closed sets. The letters i, j , 

and k denote nonnegative integers. A topological space ( X, τ ) is 

said to be compact [16] if each open cover of X has a finite sub- 

cover. A Lidelöff space is a topological space in which every open 

cover has a countable subcover. A Lidelöff space is a weakening of 

compactness, which requires the existence of a finite subcover. Tel- 

gársky [2] introduced the definition of K-cover of a space X . A fam- 

ily A of open subsets of X is a K-cover of X if for each E ∈ 2 X ∩ K, 

there exists A ∈ A such that E ⊆ A . 

Definition 2.1 [3] . A strategy s for player I is a function whose do- 

main is the set of finite sequences of nonempty open sets U i of a 

space X and s has the property that if 〈 U 1 , U 2 , ���, U k 〉 is a finite 

sequence, then s 〈 U 1 , U 2 , ���, U k 〉 is a subset of X . Such strategy for 

player I is a winning strategy if each play 〈 x 1 , U 1 , x 2 , U 2 , ���〉 of 

a game G ( X, τ ) for which x k = s (〈 U 1 , U 2 , · · · , U k 〉 ) for each positive 

integer k is won by player I. 

Definition 2.2 [2] . A topological space ( X, τ ) is called K-compact 

if each K-cover of X contains a countable cover of X . 

Lemma 2.3 [2] . If Player I has a winning strategy in an infinite posi- 

tional game G (K, X ) , then X is K-compact. 

Lemma 2.4 [2] . If a topological space ( X, τ ) is not K-compact, then 

Player II has a winning strategy in G (K, X ) . 

Definition 2.5 [16] . A topological space ( X, τ ) is called: 

(i) A T 1 if for each x, y ∈ X, x � = y , there exist two disjoint open 

sets U and V such that x ∈ U, y �∈ U and x �∈ V, y ∈ V . 

(ii) A Hausdorff or T 2 for each x, y ∈ X, x � = y , there exist two 

disjoint open sets U and V such that x ∈ U, y ∈ V and U ∩ V = φ. 

3. �∗( T i )(resp. �∗(T ∗
j 
) )-compact spaces 

In [17] , Aull introduced the notion of α-paracompact subset. A 

subset E of a space ( X, τ ) is called α-paracompact in X if every cov- 

ering of E by open subsets of X has a refinement by open subsets 

of X which is locally finite in X and covers E . 

Lupiáñez [18] used this concept to define the classes �∗( T i ) 

and �∗(T ∗
j 
) for i = 2 , 3 , 3 a, 4 , 5 , 5 a (resp. j = 4 , 5 , 5 a ). �∗( T i ) (resp. 

�∗(T ∗
j 
) ) the class of all T i spaces (resp. T ∗

j 
spaces) which are α- 

paracompact in each T i -space (resp. T ∗
j 

-space) in which are em- 

bedded as closed subsets. 

Definition 3.1. A family A of open subsets in a space ( X, τ ) is 

called �∗( T i )-cover (resp. �∗(T ∗
j 
) -cover) of X if each E ∈ 2 X ∩ �∗( T i ) 

(resp. E ∈ 2 X ∩ �∗(T ∗
j 
) , there exists A (E) ∈ A for which E ⊂ A ( E ), on 

the other hand, 2 X ∩ �∗( T i ) (resp. 2 X ∩ �∗(T ∗
j 
) ) is a refinement of A . 

Definition 3.2. A topological space ( X, τ ) is said to be �∗( T i )- 

compact (resp. �∗(T ∗
j 
) -compact) if each �∗( T i )-cover (resp. �∗(T ∗

j 
) - 

cover) of X contains a countable subcover of X . 

Theorem 3.3. If K is the class of all one-point spaces and the empty 

space. Then K-compact spaces and Lindelöf spaces coincide. 

Proof. It suffices to show that 1-cover and open cover coincide. 

Let K = {{ x } : x ∈ X} and A be a K-cover of X . By Definition 2.2 , 

we may assume A is countable. Now for each x ∈ X we have { x }. 

Thus, there exist A ∈ A such that { x } ⊆ A . Then 

⋃ {{ x } : x ∈ X} ⊆⋃ { A : A ∈ A} . Hence X = 

⋃ { A : A ∈ A} . This proves that A is open 

cover. �

Theorem 3.4. If player I has a winning strategy of an infinite po- 

sitional game G ( �∗( T i ), X ) (resp. G (�∗(T ∗
j 
) , X ) ), then X is �∗( T i ) - 

compact (resp. �∗(T ∗
j 
) -compact). 

Proof. Let s be a winning strategy of player I and A be �∗( T i )- 

cover of X . For each E ∈ 2 X ∩ �∗( T i ), there exists A (E) ∈ A for 

which E ⊂ A ( E ). We define a strategy t for player II as follows: 

We set t(E 0 , E 1 , · · · , E 2 n +1 ) = 

⋂ { X − A k (E 2 k +1 ) : k ≤ n } for each ad- 

missible sequence (E 0 , E 1 , · · · , E 2 n +1 ) for G ( �∗( T i ), X ). Let < E n : n ∈ 

N > be a play of G ( �∗( T i ), X ), where E 2 n +1 = s (E 0 , E 1 , · · · , E 2 n ) and 

E 2 n +2 = t(E 0 , E 1 , · · · , E 2 n +1 ) for each n ∈ N . Since s is a winning 

strategy for player I in G ( �∗( T i ), X ), then 

⋃ { E 2 n : n ∈ N } = X and so ⋂ { X − A n (E 2 n +1 ) : n ∈ N } = φ. Hence 
⋃ { A n (E 2 n +1 ) : n ∈ N } = X . �

Lemma 3.5 [18] . In a topological space ( X, τ ), the following hold: 

(i) If X is a Lindelöf T 3 space, then X ∈ �∗( T 4 ) . 

(ii) �∗( T 4 ) is the class of Lindelöf T 3 spaces. 

Definition 3.6. Let m be an infinite cardinal. A space X is called 

m -Lindelöf T 3 if each open cover of X contains a subcover of cardi- 

nality ≤ m . 

Theorem 3.7. For a regular space X; if player I has a winning strat- 

egy in G ( �∗( T 4 ), X ) and each E ∈ 2 X ∩ �∗( T 4 ) is m-Lindelöf T 3 space, 

then X ∈ �∗( T 4 ) . 

Proof. Let X be a regular space. By Lemma 3.5 , it suffices to prove 

that X is a Lindelöf T 3 space. Let A be an open cover of X and B
be the family of all B ⊆ X such that for each B ∈ B, there exists 

{ A i : i ∈ I} ⊆ A with card I ≤ m and 

⋃ { A i : i ∈ I} = B . Assume that 

E ∈ 2 X ∩ �∗( T 4 ) is m -Lindelöf T 3 space, this means each open cover 

A 

∗ of E by open sets of X , there exists a subcover { A 

∗
j 

: j ∈ J} ⊆ A 

∗

with card J ≤ m and E ⊆ ⋃ { A 

∗
j 

: j ∈ J} . Since A 

∗ ⊆ A and by B, then 

there exists B ∈ B such that 
⋃ { A 

∗
j 

: j ∈ I} = B and so E ⊆ B . Hence B
is �∗( T 4 )-cover of X . Assume that player I has a winning strategy in 

G ( �∗( T 4 ), X ). By Theorem 3.4 , for i = 4 , X is �∗( T 4 )-compact. Then 

B has a countable cover { B n : n ∈ N } of X and X = 

⋃ { B n : n ∈ N } . 
For each n ∈ N and B n ∈ B, there exists { A i : i ∈ I} ⊆ A with card I n 
≤ m and 

⋃ { A i : i ∈ I n } = B n . Hence 
⋃ { A i : i ∈ I n , n ∈ N } = 

⋃ { B n : n ∈ 

N } = X . Therefore { A i : i ∈ I n , n ∈ N } is a subcover of A with cardi- 

nality ≤ m and also covers X . This proves that X is m -Lindelöf T 3 
space. �

Definition 3.8. For topological spaces X and Y , a map f : X → Y is 

perfect if f ( E ) ∈ 2 X for each E ∈ 2 X and if f −1 (y ) ∈ C for each y ∈ Y 

where C is the class of all compact spaces. 

Example 3.9. Let (R , T ) be the Michael line, 

j 1 : Q × (R \ Q ) −→ Q × (R \ Q ) + (R , T ) × (R \ Q ) 

j 2 : (R , T ) × (R \ Q ) −→ Q × (R \ Q ) + (R , T ) × (R \ Q ) 

Then the mapping onto 

f : Q × (R \ Q ) + (R , T ) × (R \ Q ) −→ (R , T ) × (R \ Q ) 

such that f ( j 1 (x, y )) = (x, y ) if (x, y ) ∈ Q × (R \ Q ) f ( j 2 (x, y )) = 

(x, y ) if (x, y ) ∈ R × (R \ Q ) is a perfect mapping. 

Lemma 3.10 [18] . If X ∈ �∗( T 4 ) and Y is a closed subset of X, then 

Y ∈ �∗( T 4 ) . 

Lemma 3.10 can be rewritten as follows: if X ∈ �∗( T 4 ), then 

2 X ⊆ �∗( T 4 ) 

Definition 3.11. A class �∗( T 4 ) is said to be perfect if there ex- 

ists a perfect mapping f : X −→ Y such that if X ∈ �∗( T 4 ), then 

Y ∈ �∗( T 4 ). 

From Definitions 3.8, 3.11 and Lemma 3.10 , we have the follow- 

ing result. 

Theorem 3.12. Let �∗( T 4 ) be a perfect class and there exists a perfect 

map from X onto Y. Then 
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