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1. Introduction and preliminaries

Compactness in game theory plays an essential role when gen-
eral topology was developed. Many authors defined and studied
some types of compactness through conceps of game theory.

Berge [1] has introduced and studied the notion of topological
games with perfect information. The concept of topological games
G(K,X) was introduced and studied by Telgarsky [2]. He defined
and investigated spaces through topological games as C-scattered
and paracompact spaces [3], compact-like spaces [4]. Galvin et al.
([5,6])introduced some stationary strategies in topological games.
They studied infinite games in [7]. Junnila et al. [8] studied closure-
preserving covers by small sets. Banakh and Zdomskyy [9] intro-
duced and studied some separation properties say C-separation
properties between the o-compactness and Hurewicz property.
Tkachuk in [10] discussed Eberlein compact and weakly Eberlein
compact spaces from the view of functional analysis and Cp-theory.
Paulo Klinger Monteiro and Frank H. Page Jr [11] introduced a
condition, uniform payoff security, for games with compact Haus-
dorff strategy spaces and payoffs bounded and measurable in play-
ers strategies. Bennett, Lutzer and Reedc [12] proved a Moore
space the equivalence between domain representability; subcom-
pactness; the existence of a winning strategy for player «(= the
nonempty player) in the strong Choquet game Ch(X); the existence
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of a stationary winning strategy for player « in Ch(X); and Rudin
completeness. Scheepers and Tsaban [13] extended studies of se-
lection principles for families of open covers of sets of real num-
bers to include families of countable Borel covers. They proved
that some of the classes which were different for open covers
are equal for Borel covers. Cao et al. [14] studied some two per-
son games and some topological properties defined by them. Zoroa
et al. [15] studied games in which the strategic situation is devel-
oped on a lattice. The main characteristic of these games is that
the points in each column of the lattice have a specific associated
weight which directly affects the payoff function.

In this paper, we introduce and study new types of com-
pactness say I'*(T;)-compactness, I'*(T;)-compactness, IT%(T;)-
compactness and IT*(Tj)-compactness in the realm of Hausdorff
spaces. The paper based on an infinite topological game. In this
game players I and II alternately choose points and their open
neighborhoods respectively. I wins if and only if the moves of II
cover the space. All spaces are assumed to be T;. In particular,
compact spaces and paracompact spaces are assumed to be Haus-
dorff or Ts.

2. Some basic definitions

A topological space [16] is a pair (X, T) consisting of a set X
and family 7 of subsets of X satisfying X, ¢ € 7, 7 is closed under
arbitrary union and closed under finite intersection. Each member
in 7 is said to be an open set. The complement of each open set
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is a closed set. 2X will be denote to the class of all closed sets
in a space X. £ will be denote to a class of topological spaces
which are hereditary with respect to closed sets. The letters i, j,
and k denote nonnegative integers. A topological space (X, 7) is
said to be compact [16] if each open cover of X has a finite sub-
cover. A Lideldff space is a topological space in which every open
cover has a countable subcover. A Lideloff space is a weakening of
compactness, which requires the existence of a finite subcover. Tel-
garsky [2] introduced the definition of K-cover of a space X. A fam-
ily A of open subsets of X is a K-cover of X if for each E € 2X N K,
there exists A € A such that E C A.

Definition 2.1 [3]. A strategy s for player I is a function whose do-
main is the set of finite sequences of nonempty open sets U; of a
space X and s has the property that if (Uy, U, ---, Uy) is a finite
sequence, then s (Uy, Uy, ---, Uy) is a subset of X. Such strategy for
player I is a winning strategy if each play (x;, U, x5, Uy, ---) of
a game G(X, ) for which x; = s({Uy, Uy, ---,Uy)) for each positive
integer k is won by player .

Definition 2.2 [2]. A topological space (X, ) is called K-compact
if each K-cover of X contains a countable cover of X.

Lemma 2.3 [2]. If Player I has a winning strategy in an infinite posi-
tional game G(K, X), then X is K-compact.

Lemma 2.4 [2]. If a topological space (X, T) is not K-compact, then
Player II has a winning strategy in G(K, X).

Definition 2.5 [16]. A topological space (X, t) is called:

(i) A Ty if for each x, y € X, x # y, there exist two disjoint open
sets U and V such that x e U, ygU and x¢V, y € V.

(ii) A Hausdorff or T, for each x, y € X, x # y, there exist two
disjoint open sets U and V such that x e U,y e Vand UNV = ¢.

3. I'*(T;)(resp. IT'* (Tj*))-compact spaces

In [17], Aull introduced the notion of «-paracompact subset. A
subset E of a space (X, 1) is called «-paracompact in X if every cov-
ering of E by open subsets of X has a refinement by open subsets
of X which is locally finite in X and covers E.

Lupiafiez [18] used this concept to define the classes I'*(T;)
and I‘*(Tj*) for i =2,3,3a,4,5,5a (resp. j=4,5,5a). ['*(T;) (resp.
F*(Tj*)) the class of all T; spaces (resp. Tj* spaces) which are o-
paracompact in each T;-space (resp. Tj*—space) in which are em-
bedded as closed subsets.

Definition 3.1. A family A of open subsets in a space (X, 1) is
called I'*(T;)-cover (resp. F*(Tj*)—cover) of X if each E € 2XNT*(Ty)
(resp. E € 2Xn l"*(Tj*), there exists A(E) € A for which E c A(E), on
the other hand, 2XNT'*(T;) (resp. 2X n [*(T;)) is a refinement of A.

Definition 3.2. A topological space (X, t) is said to be I'*(T;)-
compact (resp. l“*(Tj*)-compact) if each ['*(T;)-cover (resp. I'* (Tj*)-
cover) of X contains a countable subcover of X.

Theorem 3.3. If K is the class of all one-point spaces and the empty
space. Then K-compact spaces and Lindeldf spaces coincide.

Proof. It suffices to show that 1-cover and open cover coincide.
Let K ={{x}:x <X} and A be a K-cover of X. By Definition 2.2,
we may assume A is countable. Now for each x € X we have {x}.
Thus, there exist A € A such that {x} € A. Then J{{x}:xe X} C
(U{A: A e A}. Hence X = | J{A : A € A}. This proves that A is open
cover. [

Theorem 3.4. If player I has a winning strategy of an infinite po-
sitional game G(I'*(T;), X) (resp. G(F*(Tj*),X)), then X is I'*(T;)-
compact (resp. F*(T'j*)—compact).

Proof. Let s be a winning strategy of player I and A be I'*(T;)-
cover of X. For each E € 2XNI'*(T;), there exists A(E) € A for
which E c A(E). We define a strategy t for player II as follows:
We set t(Eg,Eq1, -+, Eany1) = (X — Ag(Egrsq) 2 k < n} for each ad-
missible sequence (Eg, Eq, -, Ezppq) for G(I'*(T;), X). Let <Ep:ne
N > be a play of G(I'*(T;), X), where E,,1 =S(Eg, Eq,--- ,Eyy) and
Eznio =t(Eg,E1, -+ ,Eanyq) for each neN. Since s is a winning
strategy for player I in G(I"*(T;), X), then (J{Ez, : n € N} = X and so
(X —An(Ezni1) i n € N} = ¢. Hence U{An(Ezny1) :neN}=X. O

Lemma 3.5 [18]. In a topological space (X, t), the following hold:

(i) If X is a Lindelof T3 space, then X € I'*(Ty).
(ii) I'*(Ty) is the class of Lindelof T3 spaces.

Definition 3.6. Let m be an infinite cardinal. A space X is called
m-Lindelof T; if each open cover of X contains a subcover of cardi-
nality <m .

Theorem 3.7. For a regular space X; if player I has a winning strat-
egy in G(I'*(T4), X) and each E € 2XNT*(T4) is m-Lindeldf T3 space,
then X e I'*(Ty).

Proof. Let X be a regular space. By Lemma 3.5, it suffices to prove
that X is a Lindeldf T3 space. Let A be an open cover of X and B
be the family of all B € X such that for each B ¢ B, there exists
{A;:iel} € A with cardl < m and [J{A; : i € I} = B. Assume that
E € 2XNT*(T4) is m-Lindeldf T3 space, this means each open cover
A* of E by open sets of X, there exists a subcover {A’]*. tjejlcAr
with card J < mand E € U{A}f : j e]J}. Since A* € A and by B, then
there exists B € B such that U{A’]*. :jel} =BandsoE C B. Hence B
is ['*(T4)-cover of X. Assume that player [ has a winning strategy in
G(I'*(T4), X). By Theorem 3.4, for i =4, X is I'*(T4)-compact. Then
B has a countable cover {B;:neN} of X and X = (J{Bn : n e N}.
For each n € N and B; € B, there exists {A; : i e [} € A with cardI,
<mand (| J{A;:ie€l} =By Hence | {A;:ielh,neN}=J{Bp:ne
N} = X. Therefore {A; : i e I;,n € N} is a subcover of A with cardi-
nality < m and also covers X. This proves that X is m-Lindelof T3
space. O

Definition 3.8. For topological spaces X and Y, amap f: X — Y is
perfect if f(E) € 2X for each E € 2X and if f~1(y) eC foreachy € Y
where C is the class of all compact spaces.

Example 3.9. Let (R, T) be the Michael line,
J11@x (R\Q) — Q@x (R\Q) + (R, T) x (R\ Q)

2R T)x (R\Q) — Qx R\Q)+ (R, T) x (R\Q)
Then the mapping onto
frox®R\Q+®R.T)x (R\Q) — R, T) x (R\Q)

such that f(ji(xy))=xy) if xy)eQx R\Q)f(2(x,y)) =
x,y) if (x,y) e Rx (R\ Q) is a perfect mapping.

Lemma 3.10 [18]. If X € ['*(T4) and Y is a closed subset of X, then
Ye F*(T4)

Lemma 3.10 can be rewritten as follows: if X e I'*(T4), then
2X € T*(T,)

Definition 3.11. A class I'*(T4) is said to be perfect if there ex-
ists a perfect mapping f:X — Y such that if X € I'*(T4), then
Y e F*(T4)

From Definitions 3.8, 3.11 and Lemma 3.10, we have the follow-
ing result.

Theorem 3.12. Let ['*(T4) be a perfect class and there exists a perfect
map from X onto Y. Then
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