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In this paper, a new compound optimality criterion will be introduced. This criterion called PDKL- 

optimality. The proposed criterion aimed to introduce designs satisfy maximum probability of success, 

efficient parameter estimation and true model. An equivalence theorem is stated and proved for PDKL- 

optimality criterion. 
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1. Introduction 

The D-optimality criterion is the common criterion for achiev- 

ing efficient parameter estimation. For more details about D- 

optimality , see [1–3] . D-optimal designs are conventional optimiza- 

tions based on a chosen optimality criterion and the model that 

will be suitable. 

In the literature, there are several optimality criteria for dis- 

criminate between models (Ds -, T- and KL-criteria). Each of these 

criteria becomes applicable under certain condition and situa- 

tion. In the case of the experimenter want to discriminate be- 

tween nested models, the Ds-criterion can be applied. Thus, for 

two nested regression models which differ by s > 1 parameters. T- 

optimality criterion introduced in [4,5] is a different method for 

discriminating between models. This criterion is useful for two or 

more regression models and applied on linear or nonlinear models. 

However, T-criterion must be used to discrimination homoscedastic 

models with Gaussian errors. Uci ́nski and Bogacka [6] introduced 

an extension of T-criterion for non-homoscedastic errors. For dis- 

criminating between more generalized models with random errors 

following any distribution [7, 8] introduced the KL-criterion, which 
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depends on the Kullback–Liebler distance. Moreover, the T-criterion 

is a special case of the KL-criterion in the homoscedastic case and 

the generalization provided by Uci ́nski and Bogacka [6] (in the het- 

eroscedastic case), when the error distribution is normal. Finally, 

the KL-criterion can be used when the rival models are nested or 

not, homoscedastic or heteroscedastic, and in the case of the dis- 

tribution has normal error. 

Sometimes, experimenters wish to maximize the probability of 

an outcome. To this aim, McGree and Eccleston [9] have proposed 

a P-optimality criterion, which provide a maximum probability of 

observing outcome. Moreover, there are situation when an exper- 

imenter may be interested to achieve multiple objectives. For this 

aim, a PDKL-optimality criterion will be derived in this paper. This 

criterion proposed a method of compound criteria to achieve de- 

signs to hold an efficient parameter estimation, true model and a 

high probability of favorite outcome. 

The paper is organized as follows: Section 2 introduced a sim- 

ple review for D -, KL-, P- optimum designs. Compound design cri- 

teria DKL- and DP-optimum designs are presented Section 3 . Fi- 

nally, a new criterion called PDKL-optimality will be derived and 

an equivalence theorem is proved in Section 4 . 
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2. D-, KL-, P-optimum designs 

2.1. KL-optimum designs 

López-Fidalgo et al. [8] introduced a criterion for discrimina- 

tion between two models, which consider a generalization of T- 

criterion for the case of non-normal models. This criterion called 

KL-criterion and it is definition depend on the Kullback–Leibler 

distance between two statistical models. 

Let y be a random variable and let f 1 ( y , x, θ1 ) and f 2 ( y , x, θ2 ) be 

two rival probability density functions of y , x ∈ χ and on a vector 

of unknown parameters, θi ∈ �i , i = 1 , 2 . Assuming that f 1 ( y , x, θ1 ) 

is the “true” model, then the KL distance between the true model 

f 1 ( y , x, θ1 ) and other model f 2 ( y , x, θ2 ) is 

I ( f 1 , f 2 , x , θ2 ) = 

∫ 
χ

f 1 ( y, x ; θ1 ) log 
f 1 ( y, x ; θ1 ) 

f 2 ( y, x ; θ2 ) 
dy, x ∈ χ

where, an experimental condition x generated by the experimenter 

from a design ξ is a random variable (or a random vector) belongs 

to an experimental domain χ ⊂ R 

m , m ≥ 1 . 

The KL-optimality criterion is given by 

I 21 ( ξ ) = min 

θ2 ∈ �2 

∫ 
χ

I ( f 1 , f 2 , x , θ2 ) ξ ( dx ) (1) 

The KL-optimum design is the design maximizes I 21 ( ξ ) and de- 

noted by ξ ∗
KL . 

For regular design ξ ∗
21 , López-Fidalgo et al. [8] prove that 

ξ ∗
21 is a KL-optimum design if f ψ 21 ( x, ξ ∗

21 ) ≤ 0, x ∈ χ , where, 

ψ 21 ( x, ξ ) = I 
(

f 1 , f 2 , x , ˆ θ2 

)
−

∫ 
χ

I 
(

f 1 , f 2 , x , ˆ θ2 

)
ξ ( dx ) 

is the directional derivative of I 21 ( ξ ). The KL-efficiency of a design 

ξ relative to the optimum design ξ ∗
21 is 

E f f 21 ( ξ ) = 

I 21 ( ξ ) 

I 21 

(
ξ ∗

21 

) (2) 

2.2. D-optimum designs 

D-optimality is the vital design criterion, introduced by [10] , 

which interested of the quality of the parameter estimates. The 

idea of D-optimality depends on maximization of logarithm the 

determinant of the information matrix M ( ξ , θ ), log | M ( ξ , θ )|, or 

equivalently, minimizes logarithm determinant of the inverse of 

information matrix, log | M 

1 ( ξ , θ )|. In the general context for D- 

optimality [11] redefined the D-optimality criterion as follows: 

�D i [ M i ( ξ , θi ) ] = 

{
log | M i ( ξ , θi ) | if | M i ( ξ , θi ) | is nonsingular , 

−∞ if | M i ( ξ , θi ) | is singular 

(3) 

where | M i ( ( ξ , θi ) , ξ ) | = 

∑ 

x ∈ χ J i ( x , θi ) ξ (x) is the information ma- 

trix corresponding to the probability density function f i ( y , x; θ i ), 

i = 1, 2 and J i (x, θ i ) is the Fisher’s information matrix for a single 

observation on y at x. 

A design ξ ∗
D i 

is a D-optimum design iff ψ D i 
( x , ξ ∗

D i 
) ≤ 0 , x ∈ χ , 

where 

ψ D i ( x , ξ ) = tr 
[
M 

−1 
i ( ξ , θi ) J i ( x , θi ) 

]
− q i , i = 1 , 2 

is the directional derivative of the D-criterion function. The D- 

efficiency of any design ξ is given by 

E f f D i ( ξ ) = 

( 

| M ( ξ , θi ) | ∣∣M 

(
ξ ∗

D i 
, θi 

)∣∣
) 1 / q i 

i = 1 , 2 . (4) 

where q i is the number of parameters for each model. 

2.3. P-optimum designs 

Often, experimenters request to obtain a maximum probability 

of an outcome. To this aim, McGree and Eccleston [9] have pro- 

posed a P-optimality criterion. P-optimality criterion is a criterion 

aimed to maximize a function of the probability of observing a par- 

ticular outcome. 

One of the forms of P-optimality which defined as a maximiza- 

tion of a weighted sum of the probabilities of success, which is 

defined as follows: 

�P ( ξ ) = 

∑ n 

j=1 
π j 

(
θ, ξ j 

)
w j , for j = 1 , 2 , . . . . . . ., n 

where, π j ( θ, ξ j ) is the j-th probability of success given by ξ j and 

w j is the experimental effort relating to the j-th support point. In 

this criterion, design weights have been included and will play a 

role in maximizing the probabilities. 

For two rival models f 1 ( y, x, θ1 ) and f 2 ( y, x, θ2 ), we can defined 

the P-optimality criterion by the following function 

�P i ( ξ ) = 

n ∑ 

j=1 

πi j 

(
θi , ξ j 

)
w j , i = 1 , 2 (5) 

where π ij ( θ i , ξ j ) is the j-th probability of success in the model f i ( y, 

x ; θ i ) and θ i are the parameters for the two possible models. A de- 

sign ξ ∗
P i 

is a P-optimum design for high probability of success for 

the model f i ( y, x ; θ i ) iff ψ P i 
( x, ξ ∗

P i 
) ≤ 0 , x ∈ χ , where 

ψ P i 

(
x, ξ ∗

P i 

)
= 

�P i ( x ) − �P i 

(
ξ ∗

P i 

)
�P i 

(
ξ ∗

P i 

)
is the directional derivative of �P i 

(ξ ) . The P - efficiency of a design 

ξ relative to the optimum design ξ ∗
P is 

E f f P i ( ξ ) = 

∑ n 
j=1 πi j 

(
θi , ξ j 

)
w j ∑ n 

j=1 πi j 

(
θi , ξ

∗
P i 

)
w j 

, i = 1 , 2 (6) 

3. Compound design criteria 

There are situations when a practitioner may be interested in a 

multiple objectives. To achieve the possible objectives, compound 

criteria can be used. A compound criterion optimizes a combi- 

nation of multiple objective functions molded by maximizing a 

weighted product of efficiencies. In this Section, the DKL- and DP- 

compound criteria will be presented. The aim of DKL-optimality 

is to obtain an efficient parameter estimation and true model and 

DP-optimality aimed to obtain an efficient parameter estimation 

with probability based optimality. 

3.1. DKL-optimum designs 

Tommasi [12] introduced the DKL-optimality criterion for dual 

objective; discrimination between two rival models and efficient 

estimation for their parameters. For discrimination between f 1 ( y , 

x; θ1 ) and f 2 ( y , x; θ2 ) models, two possible KL-criteria have been 

considered, namely I 21 ( ξ ) and I 12 ( ξ ), excepting the case of nested 

models, where the largest model must be considered as the true 

model. 

The DKL-optimality defined as follows 

�DKL ( ξ ) = 

( 

I 21 ( ξ ) 

I 21 

(
ξ ∗

21 

)
) α1 

( 

I 12 ( ξ ) 

I 12 

(
ξ ∗

12 

)
) α2 

( ∣∣M 1 

(
θ, ξ

)∣∣∣∣M 1 

(
θ, ξ ∗

D 1 

)∣∣
) α3 / q 1 

×
( ∣∣M 2 

(
θ, ξ

)∣∣∣∣M 2 

(
θ, ξ ∗

D 2 

)∣∣
) 1 −α1 −α2 −α3 / q 2 

(7) 
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