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principal source of energy consumption is the radio communication which is directly proportional to the number of 
data bits, transmitted within the network. Reducing the number of bits to be transmitted using compression, reduces 
the energy consumption, hence, increases network lifetime [1]. Compressive sensing (CS) refers to the idea that for 
sparse signals; having their amplitude in the decaying order, a few data bits carry sufficient information to 
approximate the sparse signal considerably. 

CS transforms a discrete time signal �  of size �  i.e. � � ��  into �  sparse signal using discrete cosine 
transform (DCT) matrix, Ψ, �Ψ � ����) according to the equation (1). 

� � Ψ� (1) 

where � is a column vector of transform coefficients. If � � �� has � elements of significant values such 
that rest of �� � �� elements can be rejected without any substantial loss and � � 	� then, � is known as � 
sparse representation of the original signal � in DCT domain. The matrix Ψ is referred as the basis matrix. CS 
encodes � sparse signal, by computing a measurement vector � of dimension �, where � � � � �. As � has 
sparse representation with respect to basis Ψ, � is expressed as 

� � Φ� � �� (2) 

where Φ is known as measurement matrix	Φ	 � 	���� [2], [3].  The measurement vector � is decoded into 
the original signal � by determining the transform coefficient vector using � � �� where � is a rectangular matrix 
� � ���� � ΦΨ and Φ, Ψ matrices are known in advance. The reconstruction of the original signal � from a 
few random projections is an ill-posed problem, therefore, signal sparsity must be known in prior to recover � using 
� � � projections only. In CS theory, various sparse recovery algorithms have been presented to reconstruct the 
sparse signal from a small set of measurements. One of such algorithms is �� minimization as expressed in equation 
(3). 

min��‖��‖�			 	s. t.				��� � � (3) 

 ��  minimization algorithm requires only ��  measurements to accurately recover a noise-free signal. 
Unfortunately, this algorithm is very difficult in practice and is NP-hard in general [4] hence, replaced by �� 
minimization approach as shown in equation (4). �� minimization algorithm is based on linear programming (LP) 
techniques and imposes the condition of restricted isometry property (RIP) on the measurement matrix to obtain a 
unique sparsest solution [5]. 

min��‖��‖�			 	s. t.				��� � � (4) 

Although, �� minimization approach provides the strong guarantees of recovered signal yet infeasible for many 
applications due to its computational complexity and requirement of large simulation time. Therefore, the need of 
decoding algorithms with strong signal recovery having less simulation time become of critical importance. To solve 
this problem, a family of greedy iterative algorithms have been proposed e.g. matching pursuit (MP), orthogonal 
matching pursuit (OMP), stagewise OMP (StOMP), regularized OMP (ROMP), subspace pursuit (SP)etc. [6]. These 
algorithms work on the principle of selection of one or more column from the measurement matrix which is found to 
be strongly correlated with residual vector, in each iteration. The selected column is then added to the set of 
previously selected columns. In this way, support of sparse signal is estimated iteratively along with the residual 
update. To achieve the efficacy using pursuit algorithms same as that of LP methods, more restrictive constraints are 
imposed on pursuit algorithms in comparison to LP algorithms. To solve this problem, an algorithm namely, 
subspace pursuit (SP) was developed by Wei Dai and Olgica Milenkovic in [7]. SP has the lowest computational 
complexity of greedy pursuit algorithms and provides the reconstruction quality in comparison to LP methods. It 
recovers K sparse signals in the presence or absence of noise leading to approximate or accurate signal recovery, 
respectively.  

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.12.031&domain=pdf
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