
Please cite this article in press as: A. Fonseca, B. Cabral, Understanding the impact of task granularity in the energy consumption of
parallel programs, Sustain. Comput.: Inform. Syst. (2017), https://doi.org/10.1016/j.suscom.2017.10.014

ARTICLE IN PRESSG Model
SUSCOM-205; No. of Pages 12

Sustainable Computing: Informatics and Systems xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

Understanding the impact of task granularity in the energy
consumption of parallel programs

Alcides Fonseca a,∗, Bruno Cabral b

a LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
b CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

a r t i c l e i n f o

Article history:
Received 29 July 2016
Received in revised form 20 July 2017
Accepted 31 October 2017
Available online xxx

MSC:
00-01
99-00

Keywords:
Power consumption
Parallel
Granularity

a b s t r a c t

Recently, there is a concern about reducing the energy consumption of data centers and clusters for
economical and environmental reasons. Furthermore, energy consumption on mobile devices is also
important to improve battery life. In this work we address the performance-energy trade-off on shared-
memory multicore devices in parallel programs. In particular, we assess the impact of task granularity
in performance and energy consumption. Our aim is to give programmers the knowledge they need to
understand how to maximize performance of parallel programs while minimizing energy spending.

Parallel programs typically divide work in subproblems that are solved in parallel. Each subproblem
can then be recursively subdivided until it is no longer worthwhile to spawn smaller tasks. Ideally, the
number of parallel tasks should match the number of hardware threads in order to maximize performance
and reduce scheduling overheads. Cut-off algorithms are used to stop spawning new parallel tasks and,
thus, switching to sequential execution. We evaluate cut-off approaches such as MaxTasks, MaxLevel,
Surplus, Adaptive Task Control and LoadBased to understand how they influence performance and energy
consumption. Additionally, we also introduce and evaluate three novel approaches: MaxTasksInQueue,
StackSize and MaxTasksWithStackSize.

Our experiments and analysis show how branching, workload, depth and balance influence the exe-
cution time and energy spending over a set of synthetic and real world programs. We concluded that
MaxLevel was the fastest overall, while MaxTasksInQueue was the most energy efficient algorithm. Also,
despite MaxTasks being slower than the prior two, it can be used by a wider range of programs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In nowadays multicore platforms, to improve the performance
of computationally intensive programs, they have to be designed
to execute in parallel. Currently, all types of computers, from
smartphones to supercomputers, have multiple CPU cores avail-
able. In both ends of the spectrum, lowering energy consumption
has become an important goal. On smartphones, tablets and other
mobile devices, good performance is important to improve user
experience, but battery longevity is also crucial. On the other end,
energy consumption has also been an important driver for super-
computer design, both for economical and environmental reasons.

On the software side, there are several attributes that influence
both speed and energy. In this work, we focus on shared-memory
multicore processors. Typically, the longer a program is running,

∗ Corresponding author.
E-mail addresses: amfonseca@fc.ul.pt (A. Fonseca), bcabral@dei.uc.pt (B. Cabral).

more energy is being spent on that computation. However, the
energy spent does not only depend on the time a program takes
to execute, but also on the way CPU and memory are used.

One of the aspects of writing and optimizing parallel programs
is granularity control. Most of times, we have more parallelism in
the program than hardware threads. In that case, work must be
grouped together to create an ideal match between tasks and hard-
ware threads. A task is a representation of individual work that can
be executed asynchronously on any given core. If the number of
tasks is smaller than the number of available hardware threads,
some cores can become idle but keep consuming energy. If the num-
ber of tasks is larger than the number of hardware threads, time
and energy will be spent in non-profit scheduling operations. We
consider tasks instead of Operative System (OS) threads because
using system calls would introduce an undesirable overhead. Our
model uses a one-to-one matching between software OS-level and
hardware threads, similar to how green threads work but without
preemption.

https://doi.org/10.1016/j.suscom.2017.10.014
2210-5379/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.suscom.2017.10.014
https://doi.org/10.1016/j.suscom.2017.10.014
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:amfonseca@fc.ul.pt
mailto:bcabral@dei.uc.pt
https://doi.org/10.1016/j.suscom.2017.10.014

Please cite this article in press as: A. Fonseca, B. Cabral, Understanding the impact of task granularity in the energy consumption of
parallel programs, Sustain. Comput.: Inform. Syst. (2017), https://doi.org/10.1016/j.suscom.2017.10.014

ARTICLE IN PRESSG Model
SUSCOM-205; No. of Pages 12

2 A. Fonseca, B. Cabral / Sustainable Computing: Informatics and Systems xxx (2017) xxx–xxx

Listing 1. Example of LTC on the Fibonacci Example.

Listing 2. Recursive synthetic program.

The aim of this paper is to understand the impact of cut-off
algorithms in parallel programs. As such, our contributions are:

• A new methodology for evaluating the impact of cut-off algo-
rithms in parallel programs.

• A synthetic program that emulates different parallel program
behaviors.

• An evaluation of cut-off techniques using synthetic and real-
world benchmarks, in terms of time and energy consumption.

• New insights that help programmers identify the best cut-off
algorithms based workload, depth, branching and balance.

In this paper we introduce both existent and new cut-off algo-
rithms used for granularity control and related techniques (Section

2). We also present the existing work on granularity control, and
on performance/energy evaluation of parallel programs (Section
3). In order to evaluate the performance/energy impact, we define
a methodology (Section 4), of which we present the results on both
synthetic and real-world benchmarks (Section 5), from which con-
clusions are drawn (Section 6).

2. Cut-off mechanisms

Dividing computational work across tasks is not easy. It depends
on the program structure and the amount of work, which may
in turn depend on the data provided during execution. As such,
dynamic systems for scheduling any number of tasks over a cer-
tain number of threads are required. Work-stealing schedulers [1,2]

https://doi.org/10.1016/j.suscom.2017.10.014

Download English Version:

https://daneshyari.com/en/article/6903029

Download Persian Version:

https://daneshyari.com/article/6903029

Daneshyari.com

https://daneshyari.com/en/article/6903029
https://daneshyari.com/article/6903029
https://daneshyari.com

