
Applied Soft Computing 63 (2018) 72–86

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l ho me  page: www.elsev ier .com/ locate /asoc

An  investigation  of  ensemble  combination  schemes  for  genetic
programming  based  hyper-heuristic  approaches  to  dynamic  job  shop
scheduling

John  Parka,∗,  Yi  Meia,  Su  Nguyena,b,  Gang  Chena, Mengjie  Zhanga

a Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
b La Trobe University, Melbourne, Australia

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 8 March 2017
Received in revised form 7 November 2017
Accepted 10 November 2017
Available online 21 November 2017

Keywords:
Combinatorial optimisation
Job shop scheduling
Genetic programming
Hyper-heuristic
Ensemble learning

a  b  s  t  r  a  c  t

Genetic  programming  based  hyper-heuristic  (GP-HH)  approaches  that  evolve  ensembles  of  dispatching
rules  have  been  effectively  applied  to  dynamic  job  shop  scheduling  (JSS) problems.  Ensemble  GP-HH
approaches  have  been  shown  to  be  more  robust  than existing  GP-HH  approaches  that  evolve  single
dispatching  rules  for  dynamic  JSS  problems.  For  ensemble  learning  in  classification,  the  design  of  how
the  members  of  the ensembles  interact  with  each  other,  e.g., through  various  combination  schemes,  is
important for  developing  effective  ensembles  for  specific  problems.  In  this  paper,  we  investigate  and
carry  out  systematic  analysis  for  four popular  combination  schemes.  They  are  majority  voting,  which  has
been applied  to dynamic  JSS,  followed  by  linear  combination,  weighted  majority  voting  and  weighted
linear  combination,  which  have not  been  applied  to dynamic  JSS. In addition,  we  propose  several  mea-
sures  for analysing  the  decision  making  process  in the  ensembles  evolved  by GP. The  results  show  that
linear  combination  is  generally  better  for the  dynamic  JSS  problem  than  the  other  combination  schemes
investigated.  In  addition,  the  different  combination  schemes  result  in significantly  different  interactions
between  the  members  of  the  ensembles.  Finally,  the  analysis  based  on the  measures  shows  that  the
behaviours  of  the  evolved  ensembles  are significantly  affected  by the  combination  schemes.  Weighted
majority  voting  has  bias  towards  single  members  of  the  ensembles.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Job shop scheduling (JSS) problems are types of combinatorial
optimisation problems that model manufacturing environments
[1]. In a JSS problem, there is a shop floor with machines that
are used to process arriving jobs. Although both academics and
industry experts have interest in JSS problems, there has always
been a gap between the classical research to JSS (from an academic
perspective) and its application (from an industrial perspective)
[2]. In classical research to JSS, many approaches handle static JSS
problems, where the properties of the shop are known a priori
[3]. However, in practice the properties of the shop are extremely
variable and it is commonly believed that any change to the shop
floor can cause ripple effects [2]. To bridge the gaps between the
static JSS problems that have been handled by academics (where

∗ Corresponding author.
E-mail addresses: John.Park@ecs.vuw.ac.nz (J. Park), Yi.Mei@ecs.vuw.ac.nz

(Y. Mei), Su.Nguyen@ecs.vuw.ac.nz (S. Nguyen), Aaron.Chen@ecs.vuw.ac.nz
(G. Chen), Mengjie.Zhang@ecs.vuw.ac.nz (M.  Zhang).

the problems are predictable and can be optimised in advance) and
unpredictable real-world scenarios encountered in the industry,
researchers have focused on matching the problem more closely
with real-world manufacturing environments by incorporating
unforeseen events into the problem [4]. JSS problems that have real-
time unforeseen events that affect the properties of jobs, machines
and shop floor are called dynamic JSS problems [4]. Examples of
unforeseen events include dynamic job arrivals, where job arrivals
are unknown until they reach the shop floor, and machine break-
downs [4–6]. In real-world manufacturing environments, it is likely
that last minute (and potentially urgent) jobs can arrive that require
attention [4,5]. In general, dynamic JSS problems are much more
difficult than static JSS problems, and conventional optimisation
methods cannot solve dynamic JSS problems due to the unpre-
dictable changes in the shop floor [7]. Instead, dispatching rules [3]
are studied by both academics and industry experts for dynamic
JSS problems due to their interpretability [6], short reactions times
and their ability to cope well with the unforeseen events in dynamic
JSS problems [8]. To automate the design of effective dispatching
rules, many genetic programming based hyper-heuristic (GP-HH)

https://doi.org/10.1016/j.asoc.2017.11.020
1568-4946/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2017.11.020
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2017.11.020&domain=pdf
mailto:John.Park@ecs.vuw.ac.nz
mailto:Yi.Mei@ecs.vuw.ac.nz
mailto:Su.Nguyen@ecs.vuw.ac.nz
mailto:Aaron.Chen@ecs.vuw.ac.nz
mailto:Mengjie.Zhang@ecs.vuw.ac.nz
https://doi.org/10.1016/j.asoc.2017.11.020


J. Park et al. / Applied Soft Computing 63 (2018) 72–86 73

approaches to dynamic JSS problems have been proposed in the
literature [6]. GP-HH approaches have successfully evolved dis-
patching rules for various dynamic JSS problems which are more
effective than the man-made counterparts [6].

In addition to the primary motivation of automatically generat-
ing effective dispatching rules for dynamic JSS problems [6], many
GP-HH approaches have focused on evolving robust dispatching
rules for the dynamic JSS problems [9], i.e., rules that function
reliably and effectively despite noise and unexpected changes in
the problem domain. However, many approaches focus on evolv-
ing dispatching rules with a single constituent component, and
are often not sufficiently robust for dynamic JSS problems. This
issue was addressed by evolving ensembles [10] of dispatching rules
[11–13]. Ensemble learning has been shown to be effective at train-
ing robust high quality rules for JSS problems [11–13] and problems
outside of JSS (e.g. classification problems [10]) because ensem-
ble members are able to minimise errors made by other ensemble
members [10]. This makes ensemble approaches a promising direc-
tion to improve the robustness of rules evolved by GP-HH for
dynamic JSS problems. However, the existing ensemble GP-HH
approaches to JSS [11–13] only use majority voting combination
scheme [10] to combine the outputs of the subcomponents of the
ensembles together. Design of interactions between the ensem-
ble members is an important factor in ensemble learning [10]. It
is clearly evidenced on some classification problems that different
combination schemes, such as linear combination and weighted
combination schemes, can be more effective than majority voting
[10]. Therefore, it may  be possible that better rules can be evolved
by GP using combination schemes besides majority voting. In addi-
tion, by analysing the rules evolved by the different combination
schemes, one can observe the behaviour of ensembles that are
applied to dynamic JSS problem instances. This allows for future
ensemble GP-HH approaches which may  generate higher quality
and more robust rules than the current state-of-the-art GP-HH
approaches for dynamic JSS problems.

1.1. Goal

For the scope of this paper, the analysed combination schemes
are majority voting, weighted majority voting, linear combina-
tion and weighted linear combination [10]. The goal of this paper
is to investigate and analyse the combination schemes to fur-
ther improve the robustness of ensemble GP-HH approaches for
dynamic JSS problems. Majority voting was previously used by
the existing ensemble GP-HH approaches to dynamic JSS problems
[11–13]. However, linear combination, weighted majority voting
and weighted linear combination, which have extensively been
used in the classification literature [10], have not been explored
in any existing research on dynamic JSS. The members of the
evolved ensembles are analysed by their behaviours and inter-
actions on complex decision situations [14]. For this paper, we
propose new analysis measures to compare specific behaviours
between the evolved ensembles from the different combination
schemes: the diversity in the decisions made by ensemble mem-
bers, the bias towards specific ensemble members, and how the
different members of the ensembles rank in the ensembles. Over-
all, this investigation into the combination schemes for GP-HH to
dynamic JSS problems is broken down into the objectives given
below.

(a) Extend an existing ensemble GP-HH approach by incorporating
the four different combination schemes.

(b) Investigate the performances of evolved ensembles against each
other and the state-of-the-art results [8,15].

(c) Analyse in detail the behaviour of the evolved ensembles
against complex decision situations from different perspectives.

1.2. Organisation

The organisation of the paper is as follows. Section 2 includes
a background into dynamic JSS and related work which provide
approaches to dynamic JSS problems. This section also includes a
description of ensemble learning proposed in the literature. Section
3 describes the combination schemes investigated and modifica-
tions made to an existing ensemble GP approach to incorporate the
combination schemes. Afterwards, Section 4 provides a descrip-
tion of the analysis procedure to measure how the rules behave
in the problems. Section 5 covers the experimental design, Sec-
tion 6 covers the evaluation procedure, the experimental results,
the discussions of the results and the analysis. Section 7 gives the
conclusions and the future works.

2. Background

This section gives the dynamic JSS problem definition investi-
gated in this paper, and approaches in the literature for tackling
dynamic JSS problems, including GP-HH approaches. It also gives a
brief description of ensemble learning and their applications to JSS
problems.

2.1. Problem definitions for dynamic JSS

In a dynamic JSS problem instance, there are M machines on the
shop floor. An arriving job j has a sequence of Nj operations denoted
as �1j, . . .,  �Njj

. The ith operation of job j, denoted as �ij, needs to be
processed at machine m(�ij). The operations need to be processed in
the order of their indices, e.g., operation �2j cannot start until oper-
ation �1j has been processed and completed on machine m(�1j).
The duration of time operation �ij is processed on the machine is
called the processing time [3], and is denoted as p(�ij) (abbreviated
to pij). In addition, a machine can only process one operation at a
time. There is no re-entry (job has two  or more operations on the
same machine) and preemption (a job’s operation being processed
on a machine can be interrupted) [3]. The time when job j arrives at
the relevant machine that the job’s operation is currently up to is
called the operation ready time [3], and is denoted as r(�ij) (abbre-
viated to rij). The time when the job j arrives on the shop floor is
the operation ready time of the first operation of job j (denoted as
rj), and is called the release time of job [3]. The goal of JSS is to com-
plete all arriving jobs by processing the operations of the jobs on
the machines. The sequence of times and jobs that are processed
on the machines is called a schedule, and the goal is to generate
a schedule that is optimal given an objective function [3]. For this
paper, we focus on the objective of minimising the mean tardiness
(MT) of the schedule. In a problem instance with a tardiness related
objective, a job j also has a due date dj. The time when all of a job’s
operations have been completed is called the job completion time.
If a job j’s completion time Cj is greater than its due date dj, then
the job is considered tardy and has a tardiness Tj = Cj − dj. Other-
wise, a job completed before its due date has a tardiness value of
zero, i.e., Tj = 0 if Cj ≤ dj. Afterwards, the mean tardiness of a sched-
ule which has processed N jobs arriving on the shop floor is given
by 1

N

∑N
j=1Tj , i.e., is the average tardiness over the N jobs completed

in the schedule. JSS problems with tardiness related objective has
been extensively investigated in the literature as they are strongly
NP-hard [16]. In addition, we  focus on dynamic JSS problems with
dynamic job arrivals. This means that a job j’s properties such as its
operations and due date are unknown until it arrives on the shop
floor at time rj. In other words, a scheduling algorithm has limited



Download English Version:

https://daneshyari.com/en/article/6904129

Download Persian Version:

https://daneshyari.com/article/6904129

Daneshyari.com

https://daneshyari.com/en/article/6904129
https://daneshyari.com/article/6904129
https://daneshyari.com

