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Abstract

The paper develops a finite element method for the Navier–Stokes equations of incompressible viscous fluid in a time-dependent
domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence
analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any
CFL time-step restriction, it rather needs mild conditions of the form ∆t ≤ C , where C depends only on problem data, and
h2mu+2

≤ c∆t , mu is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of
practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of
numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart,
where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced computed tomography images.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid flows in time-dependent domains are ubiquitous in nature and engineering. In many cases, finding the
domain evolution is part of the problem and the mathematical model couples fluid and structure dynamics. Examples
include fluid–structure interaction problems for blood flow in compliant vessels, flows around turbine blades or fish
locomotion. In other situations, one may assume that the motion of the domain is given and one has to recover the
induced fluid flow. One example of a problem, which often assumes a priori information about the flow domains
evolution, is the blood flow simulation in a human heart when the (patient-specific) motion of the heart walls is
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recovered from a sequence of medical images [1–8]. Nowadays numerical simulations are commonly used to
understand fluid dynamics and predict statistics of practical interest in this and other applications. In the present paper,
we develop a finite element (FE) method for a quasi-Lagrangian formulation of the incompressible Navier–Stokes
equations in a moving domain. We consider an implicit–explicit method, i.e. an implicit method with advection field
in the inertia term lagged in time. For the spatial discretization we employ inf–sup stable pressure–velocity elements.

Several techniques have been introduced in the literature to overcome numerical difficulties due to the evolution
of the domain. This includes space–time finite element formulations, immersed boundary methods, level-set method,
fictitious domain method, unfitted finite elements, and arbitrary Lagrangian–Eulerian (ALE) formulation, see, e.g.,
[9–17]. In this paper we analyze a finite element method based on a quasi-Lagrangian formulation of the equations
in the reference domain. Related analysis of finite element methods for parabolic or fluid equations in moving
domains can be found in several places in the literature. We note that well-posedness of space–time weak saddle-point
formulations of the (Navier–)Stokes equations is a subtle question, see the recent treatment in [18] for the case of a
steady domain. A rigorous stability and convergence analysis of space–time (FE) methods for fluid problems seems
to be largely lacking. Scalar problems have been understood much better; for example, a space–time discontinuous
FE method for advection–diffusion problems on time-dependent domains was analyzed in [19]. ALE and Lagrangian
finite element methods are more amenable to analysis. The stability of ALE finite element methods for parabolic
evolution problems was treated in [16]. The authors of [20] analyzed the convergence of a finite element ALE method
for the Stokes equations in a time-dependent domain when the motion of the domain is given. The analysis [20]
imposes time step restriction, assumes zero velocity boundary condition and certain smoothness assumptions for
the finite element displacement field. A closely related method to the one studied here was considered in [21].
However, that paper introduced an assumption that a divergence free extension of a boundary condition function to the
computational domain is given. This assumption is not always practical and the present paper avoids it. Moreover, this
paper develops error analysis, while the thrust of [21] was the stability analysis and the numerical recovery procedure
of the domain motion from medical images.

In the present paper, we analyze a quasi-Lagrangian FE formulation that is closely related to an ALE formulation,
although they are not equivalent. In the present approach we discretize equations in a reference time-independent
domain. The geometry evolution is accounted in time-dependent coefficients. Inertia terms are further linearized
so that only a system of linear algebraic equations is solved in each time step. We consider practically relevant
boundary conditions, which result in non-homogeneous velocity on the boundary. For this method we prove numerical
stability and optimal order error estimates in the energy norm without a CFL condition in the time step. Divergence-
free condition enforced in the reference domain leads to time dependent functional spaces; this and handling non-
homogeneous boundary conditions are two main difficulties that we overcome in the analysis. For the numerical
stability bound we shall need the condition on the space mesh size and time step of the form h2mu+2

≤ c∆t , where
mu ≥ 1 is polynomial degree of velocity finite element space and c is a constant. We note that if one assumes zero
boundary conditions for velocity, which is a standard assumption for FE stability bounds in steady domains, then the
results of the paper hold without the above conditions on h and ∆t . In our opinion, homogeneous boundary conditions
are not a suitable assumption for the FE analysis in evolving domains, see discussion in Section 3.

Thus the paper advances the known analysis by including inertia effect, removing CFL time-step restriction,
handling physically meaningful boundary conditions, and making no further auxiliary assumptions except the
following one: the domain evolution is given a priori by a smooth mapping from a reference domain to a physical
domain and exact quadrature rules are applied in the reference domain, i.e. we do not analyze possible errors due
to inexact numerical integration. The mapping is not necessarily Lagrangian in the internal points, but it has to
be Lagrangian for those parts of the boundary, where correct tangential velocity boundary values are important.
Theoretical results are illustrated numerically for an example with a synthetic known solution. We further illustrate
the performance of the numerical method by applying it to blood flow simulation in a simplified model of the human
left ventricle. The domain motion in this example is reconstructed from a sequence of CECT images of a real patient
heart over one cardiac cycle. The reconstruction procedure is described in detail in our preceding paper [21].

The remainder of this paper is organized as follows. In Section 2 we review the mathematical model, including
governing equations and boundary conditions, and some useful results for this model found in the literature. We
recall the energy balance satisfied by smooth solutions. A suitable weak formulation is introduced. Based on the
weak formulation, in Section 3 we introduce the finite element method. Non-homogeneous boundary conditions are
interpolated numerically. Energy stability estimate for the finite element method is shown in Section 4. Optimal order
error bound for the method is demonstrated in Section 5. Section 6 collects results of numerical experiments. Some
closing remarks can be found in the summary and outlook Section 7.
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