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Abstract

Modern computers enable methods for design optimization that account for uncertainty in the system—so-called optimization
under uncertainty (OUU). We propose a metric for OUU that measures the distance between a designer-specified probability
density function of the system response (the target) and the system response’s density function at a given design. We study
an OUU formulation that minimizes this distance metric over all designs. We discretize the objective function with numerical
quadrature, and we approximate the response density function with a Gaussian kernel density estimate. We offer heuristics for
addressing issues that arise in this formulation, and we apply the approach to a CFD-based airfoil shape optimization problem.
We qualitatively compare the density-matching approach to a multi-objective robust design optimization to gain insight into the
method.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Modern computing power enables industrial-scale design optimization with high-fidelity numerical simulations
of physical systems. Simulation-based design is found in aircraft [1], engine [2], automotive [3] and shipping [4]
industries, among many others. To optimize, designers must precisely specify operating scenarios and manufactured
production. Off-design operation and manufacturing tolerances are typically incorporated afterward. A more complete
perspective on design optimization accounts for these uncertainties, e.g., by employing statistical performance metrics
within the design optimization. This perspective leads to optimization under uncertainty (OUU).

The computational engineering literature is chock full of formulations and approaches for OUU. Allen and
Maute [5] give an excellent overview that broadly categorizes these formulations as either robust design optimization
(RBO) or reliability-based design optimization (RBDO). The essential idea behind RBO formulations is to
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simultaneously maximize a statistical measure of the system performance (e.g., the mean) while minimizing a
statistical measure of system variability (e.g., the variance), thus improving robustness to variability in operating
conditions. The optimization is often formulated with multiple objective functions (e.g., maximize mean and
minimize variance), which leads to a Pareto front of solutions representing a trade-off between robustness and
performance. Alternative formulations treat performance as the objective function and robustness as a constraint or
vice versa. Some applications of RBO include the design of Formula One brake ducts [6], compressor blades [7],
compression systems [8], airfoils [9], and structures [10]. The RBDO formulations seek designs that satisfy reliability
criteria, such as maintaining a sufficiently small probability of failure, while minimizing a cost function of the
design [11]. Estimating the failure probabilities within the optimization with randomized methods (e.g., Monte
Carlo) can be prohibitively expensive for large-scale models; several methods exist for approximating regions of
low failure probability [12]. Engineering examples of RBDO include transonic compressors [13], aeroelasticity [14],
structures [5], and vehicle crash worthiness [15].

The statistical measures in the RDO and RBDO objective functions and constraints are typically low-order
moments – e.g., mean and variance – or probabilities associated with the system response. The chosen statistical
measures affect the optimal design, so they must be chosen carefully for each specific application.

In this paper, we propose an alternative OUU formulation. We assume the designer has described the desired
system performance as a probability density function (pdf), which we call the target pdf, and we seek to minimize
the distance between the design-dependent system response pdf and the target pdf. In other words, all criteria on
the stochastic system’s moments or failure probabilities are encoded in the target pdf. Mathematically, we treat
the target pdf as given; it is not a tunable parameter. In any real-world scenario, this pass-the-buck attitude places
tremendous responsibility on the designer to devise the perfect target pdf. We expect that a practical methodology
including the proposed statistical measure will involve some back and forth between designer and optimizer to devise
the most appropriate target pdf. Using a designer-specified response pdf has some precedent in the OUU literature.
Rangavajhala and Mahadevan [16] assume a designer-specified pdf in their optimum threshold design, which finds
thresholds that satisfy the given joint probability while allowing for preferences among multiple objectives.

Compared to other OUU formulations, density-matching is appropriate when the designer is able to specify her
desiderata for the uncertain response as a pdf. The density-matching approach finds the design that best matches the
designer’s specified pdf, and there is no need to estimate the Pareto front of a multi-objective optimization (as in RDO)
or minimize a failure probability (as in RBDO). Tolerated variability and failures are encoded in the target pdf.

We present a single-objective OUU formulation where the distance between target and response pdfs is the
objective function. We explore some interesting properties of this optimization problem, namely how the objective’s
gradient behaves when the two pdfs are not sufficiently large on the same support (Section 2). We propose a consistent
discretization of the objective function – based on numerical quadrature and kernel density estimation – that produces
a continuous approximation well-suited for gradient-based optimization (Section 3). Our prior work uses histograms
to approximate the response pdf, which leads to a less scalable optimization problem with integer variables [17].
There are some drawbacks to the density-matching formulation; we offer heuristics for addressing these drawbacks
in Section 4. In Section 5, we test the formulation on an algebraic test problem and a shape optimization problem
with the NACA0012 airfoil. In the latter case, we qualitatively compare the optimal designs to those generated by a
multi-objective RDO strategy.

2. Mathematical formulation

Consider a function f = f (s, ω) that represents the response of a physical model with design variables s ∈ S ⊆ Rn

and random variables ω ∈ Ω ⊆ Rm ; the random variables represent the uncertainty in the physical system.
The space S encodes the application-specific constraints on the design variables, e.g., bounds or linear inequality
constraints. We assume that ω are defined on a probability space with sample space Ω and probability density function
p = p(ω), which encode all available knowledge about the system’s uncertainties.1 We assume that f is scalar-valued,
f ∈ F ⊆ R, and continuous in both s and ω. For a fixed s ∈ S , let qs : F → R+ be a probability density function of

1 The final results depend on Ω and p(ω). If multiple probability density functions are consistent with the available information, then one should
check the sensitivity of the results to perturbations in these quantities.
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