
Accepted Manuscript

Accelerating high-order mesh optimisation with an
architecture-independent programming model

Jan Eichstädt, Mashy Green, Michael Turner, Joaquim Peiró, David Moxey

PII: S0010-4655(18)30097-3
DOI: https://doi.org/10.1016/j.cpc.2018.03.025
Reference: COMPHY 6470

To appear in: Computer Physics Communications

Received date : 7 November 2017
Revised date : 24 January 2018
Accepted date : 27 March 2018

Please cite this article as: J. Eichstädt, M. Green, M. Turner, J. Peiró, D. Moxey, Accelerating
high-order mesh optimisation with an architecture-independent programming model, Computer
Physics Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cpc.2018.03.025


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Accelerating high-order mesh optimisation with an architecture-independent
programming model

Jan Eichstädta, Mashy Greena, Michael Turnera, Joaquim Peiróa, David Moxeyb

aDepartment of Aeronautics, Imperial College London
bCollege of Engineering, Mathematics and Physical Sciences, University of Exeter

Abstract

Heterogeneous manycore performance-portable programming models and libraries, such as Kokkos, have been
developed to facilitate portability and maintainability of high-performance computing codes and enhance their re-
silience to architectural changes. Here we investigate the suitability of the Kokkos programming model for optimizing
the performance of the high-order mesh generator NekMesh, which has been developed to efficiently generate meshes
containing millions of elements for industrial problem involving complex geometries. We describe the variational ap-
proach for a posteriori high-order mesh optimisation employed within NekMesh and its parallel implementation. We
discuss its implementation for modern manycore massively parallel shared-memory CPU and GPU platforms using
Kokkos and demonstrate that we achieve increased performance on multicore CPUs and accelerators compared with a
native Pthreads implementation. Further, we show that we achieve additional speedup and cost reduction by running
on GPUs without any hardware-specific code optimisation.

Keywords: high-order mesh optimisation, architecture-independent programming model, Kokkos, portability,
parallel hardware, variational framework

1. Introduction

High-order spectral element methods are gaining support within the computational fluid dynamics (CFD) commu-
nity. They offer improved solution accuracy for a given computational cost due to their exponential convergence and
show very low dispersion and diffusion errors, giving these methods an edge over traditional low-order methods [1].
Although the use of high-order methods is becoming increasingly common in academic studies, a significant bot-
tleneck in their more widespread adoption in industrial applications is the availability of robust high-order meshing
capabilities for complex three-dimensional geometries, and their efficiency on current and future high-performance
computing (HPC) systems [2].

The standard approach to generate a high-order mesh is to deform an initial coarse linear mesh, which can be
obtained using one of the many available linear meshing tools, to conform with the curved boundary specified by the
CAD geometry. This a posteriori process will likely yield very distorted or inverted elements close to the boundary,
as the introduction of curvature into the element frequently leads to self-intersection. We therefore require a second
step, that corrects invalid elements through a boundary-induced mesh deformation, so that curvature is introduced into
elements connected and in close proximity to the curved surface. Several different techniques for this step have been
proposed in the literature, which can be broadly classified into two categories: elastic analogies where the mesh is
treated as a solid body and the curvature acts a force on the body, e.g. [3, 4, 5], and energy minimisation techniques in
which a functional representing mesh distortion is minimised to optimise mesh quality and correct invalid elements,
e.g. [6, 7]. Alternatively, high order meshes can be adapted by combining mesh curving and mesh topology changes,
as presented for example in reference [8].

These techniques in general are computationally expensive, since they require either the solution of a partial dif-
ferential equation or a non-linear optimisation to obtain the corrected mesh. In an industrial setting, where geometries
are typically extremely complex and meshes can consist of millions or billions of elements, this process can be com-
putationally prohibitive. Modern design lifecycles also demand the generation and optimisation of meshes in the order
of minutes or hours, typically on only a single high-performance workstation.

Preprint submitted to Communications Computational Physics 24th January 2018

*Manuscript



Download English Version:

https://daneshyari.com/en/article/6919021

Download Persian Version:

https://daneshyari.com/article/6919021

Daneshyari.com

https://daneshyari.com/en/article/6919021
https://daneshyari.com/article/6919021
https://daneshyari.com

