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a b s t r a c t

The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction
methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several
sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time
consuming due to the need to provide code for the analytical derivatives of all functions with respect to
atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and
code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries
(SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail
implementing a realistic example CV, the local radius of curvature of a polymer. Usersmay use the code as
a template to streamline the implementation of their own CVs using high-level constructs and automatic
gradient computation.
Program summary
Program Title: Practical approaches to the differentiation of collective variables in free energy codes:
computer-algebra code generation and automatic differentiation
Program Files doi: http://dx.doi.org/10.17632/r4r67bvkdn.1
Licensing provisions: GNU Lesser General Public License Version 3 (LGPL-3)
Programming languages: C++, Python
Nature of problem: The C++ implementation of collective variables (CVs, functions of atomic coordinates
to be used in biased sampling applications) in biasing libraries for atomistic simulations, such as PLUMED
[1], requires computation of both the variable and its gradient with respect to the atomic coordinates;
coding and testing the analytical derivatives complicate the implementation of new CVs.
Solution method: The paper shows two approaches to automate the computation of CV gradients, namely,
symbolic differentiation with code generation and automatic code differentiation, demonstrating their
implementation entirely with open-source software (respectively, SymPy and the Stan Math Library).
Additional comments: The paper’s accompanying code serves as an example and template for the meth-
ods described in the paper; it is distributed as the two modules curvature_codegen and curva-
ture_autodiff integrated in PLUMED 2’s source tree; the latest version is available at https://github.
com/tonigi/plumed2-automatic-gradients .
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1. Introduction

Biased approaches tomolecular dynamics (MD) enable the sam-
pling of eventswhose occurrencewould otherwise beprohibitively
rare on the time scales affordable by direct (unbiased) integration
of the equations of motion. Central to the possibility to obtain
converged estimates of thermodynamic quantities is the search of
appropriate projections of the system state [1]; in turn, this enables
the search of a reaction coordinate to effectively push the specific
system out of free energy minima. When an appropriate reaction
coordinate is selected, the sampling of a system can be accelerated
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through a number of biased sampling methods, such as umbrella
sampling [2], metadynamics [3], SuMD [4] and others [5], most of
which enable the reconstruction of the free energy landscape, and
in some cases the kinetics [6,7], on the space spannedby the chosen
variables. The availability of a wide range of functions of atomic
coordinates (collective variables or CVs) is thus a valuable asset in
the construction of proper reaction coordinates [8].

PLUMED 2 is a widely-used engine to perform biased sampling
simulations in atomistic simulations [9]. Part of PLUMED’s success
is due to the number and variety of collective variables imple-
mented (see e.g. [10–12]), enabling projections of the system state
on ‘‘axes’’ of intuitive value, and the number of CVs implemented in
PLUMED2has been growing steadily (Fig. 1). Users can incorporate
their own CVs coding them in C++; however, the implementation
of complex functions is complicated by the need to compute gra-
dients with respect to atomic coordinates, which increases the
complexity and debugging time of the corresponding source codes.

Here, we present two approaches to automatically implement
CV gradients:

1. a symbolic differentiation with code generation approach,
where the SymPy computer algebra system (CAS) [13] is
used to derive the expressions and automatically produce
an equivalent C function (Section 2); and

2. an automatic code differentiation approach, using the
reverse-mode code differentiation capabilities provided by
the Stan Math library [14] (Section 3).

We demonstrate the two approaches on the simple (yet non
trivial) case of a CV computing the local curvature of a polymer,
approximated as the radius of curvature of a circle passing through
three consecutive atoms. The two approaches provide identical
numerical results and are based on mature and well-known open
source libraries. Their different characteristics will be presented in
the discussion section.

Example code is made available as open-source, respectively,
in PLUMED 2’s curvature_codegen and curvature_autodiff
modules; from there, the corresponding source files can be used as
templates for the implementation of customized CVs.

Fig. 1. Growth of the number of CVs in PLUMED 2 and the corresponding code base
(lines of C++ code in the master branch, including headers and inline documen-
tation; the count also includes support functions, command line utilities and file
readers).

Fig. 2. The radius of curvature as a collective variable R(r1, r2, r3).

1.1. Background

A CV is a function of a system’s state through the coordinates of
its n particles, namely: [15]

f (x) = f (x1, . . . , xn)

Applying biases to CVs implies that the system is subject to a
potential V which depends on the coordinates solely through f :

V (x) = V1(f (x))

The bias potential translates to forces acting on each atom,
which are computed in the biasing library and passed to themolec-
ular dynamics (MD) engine. The MD code adds them to those due
to the force field, and integrates the equations of motion. From the
chain differentiation rule,

F(x) = −∇xV1(f (x)) = −
∂V1(f )

∂ f
∇xf (x)

here ∂V1/∂ f is the generalized force, set by the chosen biasing
scheme (e.g., a time-dependent sum of Gaussians in the case of
metadynamics), while ∇xf depends only on the functional form
of f and the system state x. Implementation of a CV requires the
programmer to write code for f (x) and its derivatives with respect
to all of the arguments (number of involved atoms times three
Cartesian components).

1.2. Radius of curvature

To illustrate themethods, we shall use as an example the radius
of curvature at a given atom along a polymer. A natural choice for
this quantity is to compute the radius R of the circle (circumcircle)
passing through three given points r1, r2 and r3 (Fig. 2), e.g. the
centers of consecutive Cα atoms. The diameter 2R is obtained
elementarily via the sine rule as the ratio between a side of the
triangle formed by the points and the sine of the opposing angle,
i.e., calling rij = ri − rj and θ123 the angle at r2,

2R =
|r13|

sin θ123
with cos θ123 =

r12 · r23
|r12||r23|

(1)

The above expression is compact in vector notation, but the
expressions for its gradient in Cartesian coordinates, i.e. the com-
ponents of ∇xR(r1, r2, r3) with x = (r1x, r1y, . . . , r3z), are unwieldy
(shown in full in the notebook CurvatureCodegen.ipynb).

1.3. Edge cases and inverse radius

Computer-assisted code generation does not automatically
guarantee that the functions are well-defined in all conditions. Of
special relevance are singularities on edge cases, such as collinear-
ity (R → ∞) in the curvature example. Edge cases might be set
aside when deriving expressions ‘‘on paper’’, but their occurrence
in computer code, however rare, must be caught to avoid crashes
in simulations.
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