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a b s t r a c t

The knowledge of electrical and mechanical properties of material, relies on a precise analysis of the
relaxation spectra. We explore the ability of a Bayesian method to achieve an accurate estimation
of spectral parameters. We implemented a parallel-tempering Markov-chain Monte Carlo algorithm
and used it to fit simulated and measured spectra. An exhaustive testing of the code shows that it
presents an extremely good performance, accurately fitting complex spectra under strong noise and
overlapping components.We conclude that this technique is quite suitable for relaxation spectra analysis,
complementing classical methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A precise knowledge of the electrical and mechanical proper-
ties of solids and liquids is of great importance for pure research, as
well as for various applications. It is a key ingredient for the devel-
opment of new materials, quality control and preventive mainte-
nance. Mechanical [1] and electrical [2,3] relaxation spectroscopy
techniques are widely used to characterise materials (see for ex-
ample [4–8]).

It is well known that, as it follows from linear response theory,
there is a complete analogy between the phenomenological de-
scriptions of linear viscoelastic and dielectric relaxation processes
(e.g. [9] and Chapter 1, Appendix 1.1 of [3]). In consequence, the
analysis methods for dielectric spectra may be also used for the
study ofmechanical relaxations. In thisworkwewill present a gen-
eral algorithm for the analysis of relaxation spectra. Although the
discussion of applicationswill focus on dielectric processes, the ex-
tension to mechanical spectra is straightforward.

Broadband dielectric spectroscopy allows the measurement of
electrical properties of amaterial, through the analysis of the inter-
action between it and an electrical excitation field. In the macro-
scopic scale, this interaction is described by two parameters: the
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permittivity ε, associated with the relaxation of the molecular po-
larisability; and the conductivity σ , linked to free charge trans-
portation.When aharmonic excitation field is applied, the complex
permittivity spectra describe jointly the frequency dependence of
both parameters [3],

ε(ω, T ) = ε′(ω, T ) − jε′′(ω, T ) − j
σ

ω
ε0. (1)

For excitation frequencies lower than 1012 Hz, the electrical prop-
erties are dominated by relaxation processes. Relaxation spectra
may be analysed through models that describe the dependence of
the complexpermittivitywith frequency, bymeans of a small num-
ber of parameters that characterise the material. A precise fitting
of these parameters is of great importance for material sciences, as
well as for device design and applications.

At present, low cost and high quality measurements of the
aforementioned properties are routinely performed both in the
laboratory and in the field. Hence, the development of powerful
tools for the analysis of experimental data is still of great impor-
tance to obtain reliable results. Spectral parameter estimation is
usually done, both by commercial and laboratory-designed soft-
ware, through fitting techniques based on the minimisation of
some figure of merit applied separately to the real and imaginary
parts of the spectra. One of themost popular techniques is the least
squares (LS) method, which aims at minimising the distance be-
tween the measured data and the fitting model. Typical LS algo-
rithms, such as the Levenberg–Marquardt scheme [10], implement
this minimisation by starting from a user-provided initial guess for
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the parameter values, and stepping along the gradient of the fig-
ure of merit in the parameter space until they reach the minimum.
This method is the usual choice in most cases, because it is simple
and gives good results in typical problems. Moreover, it is avail-
able in most software packages. However, it is less efficient when
confronted to more complex problems, such as spectra with many
overlapping relaxations (see [11] for a comprehensive discussion)
or in the presence of noise. Particularly, its convergence is not guar-
anteed for an arbitrary initial guess, as it is prone to get stuck in lo-
calminima, and the convergence speed formultiparametermodels
is slow. These disadvantages usually imply a lot of time and effort
dedicated to the search of an adequate initial guess (which may be
difficult to find when many relaxations are present), in order for
the method to converge to the true, global minimum.

An alternative to classical LS schemes, the interval analysis
(IA) method, was recently put forth by several authors [11–14].
This method is based on a sequential partition of the parameter
space, which allows the establishment of lower and upper bounds
to the best-fit parameters. Therefore, it provides an interval for
each parameter, in which the best-fit value is guaranteed to lie.
This method avoids many of the shortcomings of the LS. However,
the IA method is mathematically complex, and relies on the key
assumption of known bounds for the measurement uncertainties.
Finding proper error bounds for themethod to give sensible results
might be a difficult task. This key assumption also makes difficult
to compare the results of the IA method with either LS or any
other that makes a different assumption for the statistics of the
measurement uncertainties.

The approach to parameter estimation problems presented in
this work has become popular in many scientific fields during the
last decade. It relies on Bayesian statistical methods (e.g., [15,16]
and references therein) to provide a powerful and accurate fitting
technique for complex, multiparameter problems. The method,
called Markov-chain Monte Carlo (MCMC), is based on the sam-
pling of the posterior probability density function (PDF) of the pa-
rameters, given the data. The best-fit parameters are those that
maximise this PDF.MCMCavoids by constructionmost of the prob-
lems of the LS method. It can be applied to models of arbitrary
complexity, the only requirement being that the posterior PDF can
be computed either analytically or numerically. It works even for
non-deterministic (stochastic) models that include random com-
ponents other than those arising from measurement uncertain-
ties (e.g., [17]). It can deal naturally with parameter bounds and
symmetries, and performs a fast sampling of the parameter space,
spendingmore time in high probability regions and avoiding unin-
teresting, low probability ones. The convergence speed can be au-
tomatically controlled. A simple extension of the method, known
as parallel tempering MCMC (PT-MCMC) allows also to avoid lo-
cal maxima, ensuring the convergence for any reasonable initial
guess. The quality of the fit is directly and statistically linked to
the measurement accuracy. Indeed, the complete posterior PDF of
the parameters is given as a result, which allows the estimation
of their uncertainties (or confidence intervals) and correlations. Fi-
nally, MCMC provides a model comparison technique that natu-
rally implements the Occam’s razor rule.

Given these advantages, it is worth to explore the application
of MCMC to the problem of parameter estimation in relaxation
spectra. This work develops such an application, and is organised
as follows. In Section 2 we describe an implementation of the
PT-MCMC algorithm to fit Havriliak–Negami models to relaxation
spectra. In Sections 3 and 4 we investigate the performance of the
algorithm on simulated and real (measured) data, respectively. In
Section 5 we present our conclusions.

2. A Bayesian method to analyse relaxation spectra

Relaxation spectra can be described as a sum of several
relaxation processes taking place in thematerial. Themost general
model used to describe them is that ofHavriliak–Negami (hereafter
HN, [18]),

εHN = ε∞ +

M
i=1

1εi

(1 + (jωτi)αi)βi
. (2)

Here M is the number of relaxation processes, and ε∞ is the high
frequency limit of the real permittivity. For each relaxation process
i, τi is its characteristic relaxation time (related to the maximum
loss frequency), 1εi measures the relaxation strength, and αi and
βi describe the broadening and the shape of the relaxation peak.
Wewill denote these parameters collectively by θ⃗ . In this paper,we
will focus on the problem of estimating their best values, assuming
that the number of relaxation processes that describe the spectrum
is fixed, and that each of them can be described by a HNmodel. The
problem of determining the true number of relaxation processes
and the model that best describes each of them (either Debye, HN,
etc.), which are different aspects of a model comparison problem,
will be treated elsewhere.

The Bayes theorem (e.g., [15,16,19]) for the problem of
estimating the parameter values of a HN model may be written as

fpost(θ⃗ |D, I) =
fpri(θ⃗ |I)fL(D|θ⃗ , I)

fpri(θ⃗ |I)fL(D|θ⃗ , I)d4M+1θ
, (3)

where fpost is the posterior PDF of the parameters, given the data D
and any previous information I , fpri the prior PDF of the parameters
given I , and fL the probability (likelihood) of the data given θ⃗
and I . The prior (posterior) PDF is a representation of the state
of knowledge about θ⃗ before (after) performing the experiment.
Therefore, the best fit to the spectrum is given by the value θ⃗max
that maximises the posterior PDF.

To obtain θ⃗max, a prior PDF must be adopted. The choice of the
prior is an important task of the computation, as it may affect the
final result in a significant way. We assume that the prior can take
the form

fpri(θ⃗ |I) = fε∞
(ε∞)


i

f1εi(1εi)fτi(τi)fαi(αi)fβi(βi), (4)

whichmeans that our previous knowledge of any of the parameters
is independent of the others. The parametersαi andβi are bound to
the interval (0, 1]. If we make no further assumption, a reasonable
choice would then be a uniform prior fαi(αi) = fβi(βi) = 1 in (0, 1]
(and null otherwise). On the other hand, if we assume that a sharp
(α = 1), symmetric (β = 1) peak is more probable than a broad,
asymmetric one, an alternative would be to choose monotonic,
increasing functions for fαi and fβi . In this paper we concentrate
in the case of a known number of relaxation processes, usually
individualised as steps (peaks) in the plot of the real (imaginary)
parts of the spectrum. As both ε∞ and the strengths 1εi represent
the heights of the different steps, they can be coarsely constrained
to be in [0, εmax]. Here εmax is an upper bound to the real part of
the data, which can be determined simply by inspecting the plot.
Once again, with no further assumption, the reasonable choice is
a uniform prior fε∞

= f1ϵi = ε−1
max in [0, εmax]. The parameters τi

present a different problem. As they are related to the reciprocal
of the peak frequencies, they can vary a priori by several orders
of magnitude. Therefore, the best choice in this case is the Jeffreys
prior fτi ∝ τ−1

i in [ω−1
max, ω

−1
min], where ωmin,max are the frequency

limits of the spectrum (e.g., [16]). This prior has equal probability
per time decade, and allows the exploration of the complete
time domain of the experiment, which may be computationally
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