
Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

An object oriented Python interface for atomistic simulations✩

T. Hynninen a,b,∗, L. Himanen a, V. Parkkinen c, T. Musso a, J. Corander c, A.S. Foster a
a COMP, Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland
b Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
c Department of Mathematics and Statistics, University of Helsinki, FI-00014, Finland

a r t i c l e i n f o

Article history:
Received 13 March 2015
Accepted 3 September 2015
Available online xxxx

Keywords:
Atomistic simulations
Classical potential
Object oriented
Python
Fortran

a b s t r a c t

Programmable simulation environments allow one to monitor and control calculations efficiently and
automatically before, during, and after runtime. Environments directly accessible in a programming
environment can be interfaced with powerful external analysis tools and extensions to enhance the
functionality of the core program, and by incorporating a flexible object based structure, the environments
make building and analysing computational setups intuitive. In this work, we present a classical atomistic
force fieldwith an interfacewritten in Python language. The program is an extension for an existing object
based atomistic simulation environment.

Program summary

Program title: Pysic

Catalogue identifier: AEYE_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYE_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland.

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 74.743.

No. of bytes in distributed program, including test data, etc.: 758.903.

Distribution format: tar.gz

Programming language: Python, Fortran 90.

Computer: Program has been tested on Linux and OS X workstations, and a Cray supercomputer.

Operating system: Linux, Unix, OS X, Windows.

RAM: Depends on the size of system.

Classification: 7.7, 16.9, 4.14.

External routines: Atomic Simulation Environment, NumPy necessary. Scipy, Matplotlib, HDF5, h5py
recommended. The random number generator, Mersenne Twister, is included from the source:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/FORTRAN/mt95.f90

Nature of problem:Automated simulation control, interaction tuning and an intuitive interface for running
atomistic simulations.

Solution method: Object oriented interface to a flexible classical potential.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author at: Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.

E-mail address: teemu.hynninen@utu.fi (T. Hynninen).

http://dx.doi.org/10.1016/j.cpc.2015.09.010
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.09.010
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AEYE_v1_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/VERSIONS/FORTRAN/mt95.f90
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:teemu.hynninen@utu.fi
http://dx.doi.org/10.1016/j.cpc.2015.09.010

2 T. Hynninen et al. / Computer Physics Communications () –

Additional comments:
User guide: http://thynnine.github.io/pysic/
Running time: Depends on the size of system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, the focus in the development of scientific codes
has been on the speed, accuracy, and algorithmic functionality, as
these are the most important factors deciding the computation
cost, reliability, and versatility of the simulations. User friendliness
and the flexibility of the interface are often not key concerns. Focus
on computational speed usually means profound code optimiza-
tion specifically for certain types of calculations — sometimes even
for specific hardware—and this naturally limits the amount of con-
trol the user can be given.

Codes with more emphasis on accessibility have emerged
during the last decade. In general, user interface design aims at
making it easy and efficient for the user to interact with software.
For scientific codes, accessibility typically implies that it is easy,
even intuitively so, for the user to build, control, and analyse the
simulations. Building is easy when simulation components can be
placed freely; control is easy if choosing how to run or constrain the
dynamics of the system is straightforward; and analysis is easy if
the simulation data can be readily extracted and fed to other tools.
In all these aspects, accessibility implies that (i) there are plenty
of options so that the user can pick the optimal methods, (ii) the
commands for communicating user choices to the program and
extracting results are, at least mostly, understandable without an
external manual, and (iii) the program can also communicate with
other programs and operations can be automated.

One strategy for achieving all of these aspects of accessibility
is to construct a programming interface for the code, and Python
has become a popular interface language, as it has both powerful
scripting capability as well as advanced features of object oriented
programming. As an interpreted language it is slow to execute, but
it is possible to implement the computationally intensive parts in
more efficient compiled languages such as C or Fortran in order to
gain back computational speed.

Amajor advantage of an object oriented interface is that it struc-
tures information in a format which humans can understand and
manipulate. Parameters have understandable names and objects
ideally have intuitive connections. Python can be run in an inter-
activemode, and there the in-code documentation and query tools
allow the user to find the proper keywords even without a man-
ual. Besides streamlining the setup of calculations and minimiz-
ing the risk of errors, an intuitive user interface makes it easier for
newcomers to start using the program and understand the work-
ing principles. This can make the code a tool for both research and
teaching.

In this work, we present a Python library for evaluations of clas-
sical atomistic force fields. The library is designed to workwith the
Atomistic Simulation Environment (ASE) [1], an established Python
framework for atomistic and electron structure calculations. ASE
follows the paradigmof object oriented programming towrap sim-
ulation entities such as atomic structures or dynamics algorithms
in Python objects, which are easy to manipulate by both human
users and script.

Although ASE provides tools for building and evolving atomic
structures, it relies on external programs to determine the
interactions between the atoms. Interfaces exist to several such

codes, called calculators in ASE, at classical (e.g., LAMMPS [2]) and
density functional theory level (e.g., GPAW [3]). Our library, Pysic,
is also a calculator for ASE at the classical level, but instead of
providing just a Python interface to an external calculator, Pysic
reduces atomistic potentials to Python objects allowing the user
to build the interaction model from components. Pysic is not
concerned with constructing an atomic structure or its dynamic
evolution, as these are already handled in ASE. Instead Pysic
calculates the energies and forces of a given structure, i.e., it defines
the potential energy surface of the system.

For instance, Pysic describes local pair and many body poten-
tials with Potential objects (see Sections 2.1 and 3.1.2). Many
body bond order factors can be added as BondOrderParameters
objects (Sections 2.2 and 3.1.3). Standard Ewald summation is
supported and accessed through the CoulombSummation object
(Sections 2.4 and 3.1.5). Charge dynamics can be controlled using
the ChargeRelaxation object (Sections 2.5 and 3.1.6). The com-
plete potential, which may be passed to ASE for dynamical simula-
tions, is contained in the Pysic object (Section 3.1.1).

2. Functionality

2.1. Local potentials

A library of pair and many body potentials are included in Pysic
and also tabulated potentials can be used. The preprogrammed
potentials range from simple harmonic springs to elaborate bond
order potentials such as the Tersoff potential [4]. Potentials can be
targeted to atoms based on their element (such as ‘C’ or ‘H’), their
index (a unique number for each atom), or a tag (a numeric label,
which can be the same for a group of atoms).

By default, all local potentials are truncated at a cutoff distance
specified by the user. However, this may lead to discontinuities
in energy and forces and numeric noise. To counter this, smooth
cutoffs can be used, where the potentials are multiplied by a
function decaying to zero at the cutoff, Ṽ (r) = f (r)V (r). The cutoff
function used in Pysic is

f (r) =

1, r ≤ rsoft
1
2

1 + cosπ

r − rsoft
rhard − rsoft

, rsoft < r ≤ rhard

0, r > rhard

. (1)

This cutoff can also be applied to potentials that do not decay as a
function of distance to ensure finite bond lengths.

2.2. Bond order and density-like potentials

Bond order potentials are typically of the type

U =

(i,j)

bijuij, (2)

where uij is a pair potential defined, and bij is the bond order factor.
Analogously for single atom potentials,

U =

i

biui. (3)

http://thynnine.github.io/pysic/

Download English Version:

https://daneshyari.com/en/article/6919675

Download Persian Version:

https://daneshyari.com/article/6919675

Daneshyari.com

https://daneshyari.com/en/article/6919675
https://daneshyari.com/article/6919675
https://daneshyari.com

