
Computer Physics Communications 194 (2015) 18–32

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational performance of a smoothed particle hydrodynamics
simulation for shared-memory parallel computing
Daisuke Nishiura ∗, Mikito Furuichi, Hide Sakaguchi
Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan

a r t i c l e i n f o

Article history:
Received 14 November 2013
Received in revised form
11 March 2015
Accepted 9 April 2015
Available online 18 April 2015

Keywords:
SPH
Particle simulation
OpenMP
CUDA
MIC
GPU

a b s t r a c t

The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated
for three types of current shared-memory parallel computer devices: many integrated core (MIC)
processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in
efficient shared-memory allocation methods for each chipset, because the efficient data access patterns
differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP
programming forMIC processors andmulti-core CPUs.We first introduce several parallel implementation
techniques for the SPH code, and then examine these on our target computer architectures to determine
the most effective algorithms for each processor unit. In addition, we evaluate the effective computing
performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics
for overall performance in a multi-device environment. In our benchmark test, the GPU is found to
produce the best arithmetic performance as a standalone device unit, and gives the most efficient power
consumption. The multi-core CPU obtains the most effective computing performance. The computational
speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using
MICs is an attractive choice for existing SPH codes onmulti-core CPUs parallelized by OpenMP, as it gains
computational acceleration without the need for significant changes to the source code.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Large-scale parallel computing is important for numerically reproducing actual measurement results and dynamics of phenomena
in various science and engineering areas, such as civil engineering [1], bioengineering [2], pharmaceuticals [3], and earth sciences
[4,5]. The computational performance of parallelized software tools plays a critical role in such simulation studies, as these improve
the computational accuracy relative to the simulation resolution within a limited computation time. Recent massively parallel computer
systems based on shared- and distributed-memory architectures employ various types of arithmetic processors. Current processor designs
are known to exhibit totally different computational performance depending on the numerical algorithms and implementation methods
employed. Thus, it is important to investigate and compare different numerical algorithms and code tuning techniques for each type of
processor.

Currently, parallel computing generally uses either a multi-core central processing unit (CPU), graphics processing unit (GPU), or
many integrated core (MIC) processor. Multi-core CPUs have traditionally been used in high-performance computing, whereas GPUs were
originally designed for computer graphics with many arithmetic cores [6]. Nowadays, the purpose of GPUs is more generalized, and they
are used in many of the parallel computer systems on the TOP 500 list [7]. MIC is a new hardware accelerator used in processors such
as Intel’s Xeon Phi [8], which consists of up to 61 cores. The MIC architecture is used in the cluster systems of Tianhe-2 and Stampede,
which were ranked first and sixth, respectively, in the 2013 TOP 500 list. These recent supercomputers employ distributed/shared hybrid
memory systems designed for inter/inner-node hierarchically parallelized applications.

The common progress of current processor designs is the increase in the number of cores using vector operations such as single-
instruction–multiple-data (SIMD). In such a situation, the shared-memory parallelization plays a basic but critical role in dealing with

∗ Corresponding author.
E-mail address: nishiura@jamstec.go.jp (D. Nishiura).

http://dx.doi.org/10.1016/j.cpc.2015.04.006
0010-4655/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).

http://dx.doi.org/10.1016/j.cpc.2015.04.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.04.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nishiura@jamstec.go.jp
http://dx.doi.org/10.1016/j.cpc.2015.04.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Nishiura et al. / Computer Physics Communications 194 (2015) 18–32 19

the increasing number of arithmetic cores in an efficient manner. However, parallel computing often cannot be performed efficiently on
sharedmemory owing to memory-access conflicts, whereby parallel threads concurrently write to the samememory address. In addition,
for multi-core processors, memory allocation must be carefully considered, because data locality significantly influences the memory
access speed. For many-core processors such as GPUs, data alignment should also be appropriately implemented, as this affects the global
memory access speed.

Numerical simulation methods used in science and engineering include the finite difference method (FDM), finite element method
(FEM), finite volume method (FVM), boundary element method (BEM), and particle simulation method (PSM). Among these, PSM has a
benefit of being mesh-free, allowing the computation of large-scale deformations and fractures of a continuum body without expensive
remeshing tasks. As a PSM, smoothed particle hydrodynamics (SPH) is often used for a range of applications including wave breaking,
tsunami simulations, etc. [9–12] because of its robustness in free-surface fluid dynamics. However, PSM programs must be implemented
carefully to avoid write-access conflicts under shared-memory parallelization, especially when calculating a resultant force. In general,
the inter-particle interaction force Fij between particles i and j is calculated once per interacting pair, and, according to the action–reaction
law, the calculated force is distributed between the two particles as Fij and Fji (= −Fij). Conflicts may arise on the shared memory when
the interaction forces are distributed to each particle i and j in parallel, because different parallel threads may concurrently add the force
to the same particle.

To address these issues, a number of parallel algorithms for shared memory have been developed [13–19]. One of the simplest
methods is to use atomic instructions, which atomically accessmemory locations to parallelize the reduction operation by adding compiler
directives to the program code. In general, however, such instructions are computationally expensive because of memory barriers. The
use of private memory space on each thread is proposed for reducing the cost for such memory barriers [19], although this technique is
useful only for a small number of threads. Another approach is to calculate the interaction twice [13–15], such that Fij and Fji are calculated
separately in order to integrate the forces on particles i and j in parallel without using the action–reaction law. Although this method can
avoid write-access conflicts, it requires double the arithmetic cost to evaluate the reaction force Fji. We have proposed parallel algorithms
to avoid this problem [20]. Our algorithms use the action–reaction law to evaluate Fji from Fij, and parallelize the interaction summation
with a reference table to avoid memory access conflicts. Our method was found to show high computational performance on GPUs, but it
is not clear whether our algorithms are also efficient on other current processors.

To suggest which processor and implementation is suitable for PSM, we investigate the parallel performance of an SPH program on
various many- and multi-core platforms. First, we introduce several parallelization strategies for three major modules of SPH, namely
neighbor particle pair list creation, interaction calculation, and updating particle information. The computation time of these modules is
then examined to determine the best algorithm for each processor type: CPUs with/without SIMD instructions, MIC, and GPUs. Finally, we
discuss the effective performance and power efficiency for the SPH simulation in high-performance computing.

2. Computational procedures for parallelized SPH simulations

2.1. Formulation of SPH simulation

SPH is amesh-free simulationmethod that discretizes the fieldwith explicitly tracked reference particles [21]. Each particle has a kernel
function characterized by a spatial distance, called the ‘‘smoothing length’’. In this research, Wendland’s function in three-dimensional
space is used as the kernel functionWij with smoothing length h:

Wij =
21

16πh3


1 −

rij
2h

4 
2
rij
h

+ 1


0 ≤

rij ≤ 2h, (1)

∇iWij =
105

16πh5

rij
2h

− 1

3

rij, (2)

where rij = ri − rj is the relative position between particle i and particle j, with rk denoting the position of particle k, and ∇iWij is the
gradient of the kernel function.

By discretizing the Navier–Stokes equations of fluid with the kernel function, the momentum equation and the continuity equation are
given by

dvi
dt

= −


j

mj


Pj
ρ2
j

+
Pi
ρ2
i


∇iWij +


j

mj


ξ

ρiρj

4µiµj
µi + µj

 vij · rij
r2ij + η2


∇iWij (3)

and

dρi

dt
=


j

mjvij∇iWij (4)

respectively, where vij (= vi−vj) is the relative velocity between particle i and particle j, and vk, Pk, ρk,µk, andmk are the velocity, pressure,
density, viscosity, andmass of the kth particle, respectively. η is a small parameter used for smoothing out the singularity at rij = 0, which
is set to 0.01h. ξ is determined to be 4.96333 as per a calibration against the known exact transient solution of the Couette flow [22].
The local pressure in the first term on the right-hand side of Eq. (3) is given by the following equation of state, which is based on Tait’s
equation [23]:

Pi =
c20ρ0

γ


ρi

ρ0

γ

− 1


(5)



Download English Version:

https://daneshyari.com/en/article/6919929

Download Persian Version:

https://daneshyari.com/article/6919929

Daneshyari.com

https://daneshyari.com/en/article/6919929
https://daneshyari.com/article/6919929
https://daneshyari.com

