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A B S T R A C T

The present study is based on the application of a multivariate statistical analysis approach for the selection of
optimal descriptors of nanomaterials with the objective of robust qualitative modeling of their toxicity. A novel
data mining protocol has been developed for the selection of an optimal subset of descriptors of nanomaterials by
using the well-known multivariate method principal component analysis (PCA). The selected subsets of de-
scriptors were validated for qualitative modeling of the toxicity of nanomaterials in the PC space. The analysis
and validation of the proposed schemes were based on five decisive nanomaterial toxicity data sets available in
the published literature. Optimal descriptors were selected on the basis of the maximum loading criteria and
using a threshold value of cumulative variance≤ 90% on PC directions. A maximum inter-class separation B( ) and
the minimum intra-classes separation A( ) were obtained for toxic vs. nontoxic nanomaterials in the PC space with
the selected subsets of optimal descriptors compared to their other combinations for each of the datasets.

1. Introduction

Nanomaterials are the nanometer size substances [1] typically
synthesized from metal oxides: TiO2. ZnO, Fe2O3, CuO, SiO2, WO3, etc.
[2–5]; metals: Ag, Au, Pt, Co, Ni, Cu, etc. [6–9]; carbon [10]; and other
chemical compounds such as cadmium chloride, silver carbonate, so-
dium molybdate, and aluminum chloride [11]. The application of nu-
merous commercial products based on nanomaterials is expanding in
our daily practice, including in food, health, cosmetics, and households
[12]. Superfluous applications of nanomaterials result in not only the
constructive imprints for the advancement of human lives but also some
harmful impacts on health and the environment [12,13]. Consequently,
it is essential to assess the injurious impacts of nanomaterials on living
beings as well the environment to acquire their maximum benefits with
the minimum hazard. In this regard, a computational model to measure
the effect of nanoparticle deposition in the nasal cavity, nasopharynx,
oropharynx, larynx, and trachea was developed by Ghalati et al. [39].
Toropov et al. [40] have presented a brief review of databases and
software that can be used in toxicity prediction of drugs and nanoma-
terials.

In most of the studies, the impacts of nanomaterials were measured
by assessing their biological reactions, such as cell viability, cellular
uptake, mitochondrial activity, cellular ROS, oxidative stress, DNA
damage, and LC50, in two ways: directly through in vivo (on human, rat,

fish, insects, pig, and other animals) experiments or indirectly via in
vitro (cultured cells of human and animals) experiments
[2,6,8,11,14,15]. Novel QSTR-Perturbation models [33–36], struc-
ture–activity relationships [37], theoretical descriptors [41], and the
Quasi-SMILES-based nano-quantitative structure–activity model [42]
have been developed and discussed in the prediction of ecotoxicity and
cytotoxicity of nanoparticles. Due to the availability of multiple cellular
responses (endpoints) of nanomaterials, it is a challenging task to
identify the significant and collective toxicity measures that necessitate
further research in this direction. Moreover, thorough information on
mutual relationships among the multiple endpoints needs to be ad-
dressed. At the same time, both the in vivo and in vitro experiments are
slow and expensive and contain ethical concerns that note the re-
quirement of robust toxicity prediction models by using the available
databases of nanomaterials in published literature and using advanced
analysis procedures.

1.1. Literature survey and motivation of the present study

In the latter trend, some reports can be found in the literature re-
lating to the physicochemical descriptors of nanomaterials with their
cellular toxicity measures using the multivariate statistical analysis
methods (summarized in Ref. [16]). The related studies can be broadly
characterized into three main categories: (i) qualitative classification of
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nanomaterials (toxic vs. nontoxic) using novel features, such as prin-
cipal components (PCs), e.g., nanomaterials grouping using their de-
scriptors by Sayes and Ivanov [17] and Lynch et al. [18], and clustering
methods, e.g., nanomaterial biological activity interpretation using
hierarchical clustering by Shaw et al. [19]; (ii) quantitative classifica-
tion of toxic vs. nontoxic nanomaterials using supervised pattern re-
cognition methods, such as linear discriminant analysis (LDA) [17],
artificial neural network (ANN) modeling of reorganizational energy of
nanotubes by Taherpour et al. [20], support vector machine (SVM)
[21], naïve Bayes, k nearest neighbor [22] in nanostructure activity
relationship modeling; and (iii) quantitative prediction of toxicity
measures using regression analysis methods (discussed as quantitative
structure–activity relationships (QSARs) models [21–23]. In some re-
cent studies, data imputation and PChem score-based screening ap-
proaches [43] and generalized linear model, SVM, random forest, and
ANN methods [44] have been implemented in toxicity prediction and
the classification of nanomaterials.

The recognition of an optimal set of significant physicochemical
descriptors of nanomaterials is essential for the improved efficiency of
each of the earlier mentioned models of three categories in toxicity
prediction. The physicochemical descriptors of nanomaterials can be
arranged into three groups as intrinsic (fundamental) descriptors, such
as the number of atoms, position in the periodic table (both period and
group), mass of atoms, mass of the compound, band gap, density, and
electronegativity, between intrinsic and extrinsic (measurable) de-
scriptors, such as surface charge, size, hydrodynamic size, and metal
dissolution, and extrinsic descriptors, such as concentration. The suc-
cess of toxicity prediction modeling of nanomaterials also requires an
understanding of (i) chemical associations among the measurable
physicochemical descriptors, and (ii) the biological mechanisms of
cellular responses and their relationship with the intrinsic as well as
extrinsic physicochemical descriptors [24,25]. Moreover, similar
weights of intrinsic and extrinsic descriptors were considered in the
majority of studies for the toxicity modeling, which causes loss of
toxicity information of nanomaterials. Though the weight of each of the
physicochemical descriptors must be identified, thereafter, significant
descriptors should be selected in the toxicity modeling of nanomater-
ials. For that reason, there is an urgent need for a collective procedure
for selecting the significant descriptors in nanomaterial toxicity mod-
eling in diverse experimental conditions. The selection of an optimal
subset of nanomaterial descriptors by using the multivariate analysis

methods can be a feasible solution. There are few published studies in
this direction based on different experiments. Sayes and Ivanov [17]
have proposed a procedure to determine the independent physico-
chemical descriptors of nanomaterials by grouping them using PCA and
correlation analysis; Lynch [18] used a similar approach for the iden-
tification of interrelated physicochemical descriptors in toxicity mod-
eling. However, we hardly found any reports that present a common
physicochemical descriptor selection and validation protocol for dis-
similar nanomaterials toxicity datasets measured in diverse conditions.
In the present study, a simple and common procedure for the selection
and validation of significant physicochemical descriptors of nanoma-
terial in their qualitative toxicity modeling is proposed. Moreover, the
contribution of each of the descriptors (whether intrinsic or extrinsic)
can be explained by the proposed qualitative model. Five different
nanomaterial toxicity datasets from the published literature have been
included in the analysis and validation of the proposed approach. In
addition to the qualitative discrimination of toxic vs. nontoxic nano-
materials in the PC space with the selected optimal set of physico-
chemical descriptors, a quantitative class separability measure was used
in the validation.

2. Experimental nanomaterials datasets

Five benchmark experimental nanomaterials datasets available in
the recently published literature were collected and used in the present
analysis. A short description of each of the datasets is as follows.

2.1. Nanomaterial dataset-I

The dataset was collected from published research of Liu et al. [4]
(Table 1 and Table 2), in which nanostructure activity-based toxicity
classification model is described. It contains fifteen physicochemical
descriptors (GMe: group of metal nanoparticles, Zw: zeta potential in
mV , isoelectric point, Cs: surface area concentration in −m L2 1, Cn:
number concentration in −L 1, d: size in nm, Cm: mass concentration in
mg L/ , ρ: density in g cm/ 3, θv: ratio of Cm and ρ, EMeO: atomization en-
ergy in −kcal eqv/ 1, Nme: number of metal atoms, No: number of oxygen
atoms, mMe: mass of metal, mMeo: molecular weight of the metal oxide
and Pme: period of metal) of nine metal oxide nanoparticles (Al2O3,

CeO2, Co3O4, TiO2, ZnO, CuO, SiO2, Fe3O4,
and WO3). A total of eighty-three exposure concentrations of

Table 1
Loading value of nanomaterial descriptors on principal components (PCs) in the analysis of dataset-I.

Principal components (PCs) Physicochemical descriptors

NMe No mMe mMeO GMe ZW IEP Cs Cn d Cm ρ ϴv PMe EMeO

PC1 −0.07 −0.16 −0.36 −0.36 0.29 0.07 0.04 0.31 0.07 0.32 0.18 −0.39 0.28 −0.38 0.14
PC2 −0.32 −0.24 0.02 −0.25 −0.04 −0.17 −0.14 −0.23 −0.48 0.28 −0.43 −0.12 −0.35 0.01 0.20
PC3 −0.37 −0.14 0.32 −0.03 −0.25 −0.36 −0.34 0.28 0.14 0.19 0.29 0.09 0.30 0.30 0.16
PC4 0.35 0.51 −0.05 0.27 0.05 −0.41 −0.45 0.08 −0.08 0.13 −0.13 −0.29 −0.02 −0.16 0.10
PC5 −0.15 −0.20 0.05 −0.06 0.51 −0.22 −0.35 0.02 0.04 −0.21 −0.06 0.04 −0.03 −0.05 −0.67
PC6 0.01 0.12 0.20 0.16 0.09 0.33 0.06 0.52 −0.63 0.11 −0.11 0.08 0.23 0.11 −0.17
PC7 −0.15 0.22 0.41 0.12 0.29 0.44 −0.10 −0.27 0.26 0.50 0.09 −0.18 −0.13 0.07 −0.05
PC8 0.14 −0.17 −0.36 0.19 −0.44 −0.02 −0.01 −0.06 0.00 0.55 0.08 0.10 −0.04 0.00 −0.52
PC9 −0.03 0.13 −0.03 0.01 0.17 −0.16 0.06 −0.43 −0.49 0.01 0.68 0.16 0.08 −0.11 0.03
PC10 0.15 −0.27 0.23 0.01 −0.32 0.14 −0.09 −0.11 −0.16 −0.29 0.19 −0.73 0.03 0.07 −0.17
PC11 0.16 −0.07 −0.38 −0.14 0.04 0.43 −0.62 0.01 −0.05 −0.11 0.15 0.16 −0.13 0.34 0.19
PC12 −0.02 0.02 0.06 0.01 0.00 −0.08 0.11 0.47 0.01 −0.01 0.37 −0.03 −0.78 −0.06 0.00
PC13 0.31 −0.16 0.42 −0.26 −0.21 0.14 −0.28 0.00 0.00 0.03 0.00 0.33 0.00 −0.62 0.02
PC14 −0.62 0.44 −0.18 −0.01 −0.35 0.22 −0.17 0.00 0.00 −0.23 0.00 −0.04 0.00 −0.33 −0.16
PC15 −0.19 −0.44 −0.08 0.75 0.12 0.09 −0.11 0.00 0.00 −0.07 0.00 0.02 0.00 −0.30 0.26

Note → Nme (number of metal atoms), No (number of oxygen atoms), mMe (atomic mass of metal), mMeo (molecular weight of metal oxide), GMe (group of metal in
periodic table), Zw (zeta potential in mV), IPE (isoelectric point), Cs (concentration in m2 L−1), Cn (concentration in L−1), d (size in nm), Cm (concentration in mg/L),
ρ (density in g/cm3), ϴv (volume fraction), Pme (period of metal in periodic table), EMeO (atomization energy in kcal/eqv−1).
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