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A B S T R A C T

Theoretical and methodological principles are presented for the construction of very large inference nets for odds
calculations, composed of hundreds or many thousands or more of elements, in this paper generated by structured
data mining. It is argued that the usual small inference nets can sometimes represent rather simple, arbitrary
estimates. Examples of applications in clinical and public health data analysis, medical claims data and detection
of irregular entries, and bioinformatics data, are presented. Construction of large nets benefits from application of
a theory of expected information for sparse data and the Dirac notation and algebra. The extent to which these are
important here is briefly discussed. Purposes of the study include (a) exploration of the properties of large
inference nets and a perturbation and tacit conditionality models, (b) using these to propose simpler models
including one that a physician could use routinely, analogous to a “risk score”, (c) examination of the merit of
describing optimal performance in a single measure that combines accuracy, specificity, and sensitivity in place of
a ROC curve, and (d) relationship to methods for detecting anomalous and potentially fraudulent data.

1. Introduction and brief review

1.1. Background

Computer applications for medicine such as clinical decision support
often need a large amount of organized knowledge [1,2]. Medical
knowledge captured on the Internet began to escalate to many petabytes
in 2009 [1], but when the discipline of Artificial Intelligence (AI) first arose
under that name in the 1950s, a broad spectrum of knowledge usable by
computers was much harder to gather, and more weight was given to
logic solving and game playing [3]. They are considered weak methods,
because they do not scale up to large or difficult instances [4]. A recent
review of the development of AI [5] also argued that (a) humans learn as
children essentially by the combination of top-down and bottom-up
methods that AI has imitated [5,6], and (b) benefit from, and even need,
large amount of input information. By “top down” is meant the kind of
inference based on given or taught knowledge that is prepared in
advance, essentially in a form still readily recognizable by humans,
typically probabilistic and sometimes called “Bayesian”, and typically
associated with inference nets [4–6]. An inference net is reasonably

defined as the linkages between a set of conditions and conclusions
selected and executed by an inference engine in a system that explicitly
represents knowledge in the form of words and symbols [5]. It should be
contrasted with the “bottom up” and Deep Learning approaches that use
artificial neural networks, usually start empty of information, encode
gathered “knowledge” or information somewhat obscurely as weights
associated with the simulated neurons, and train to focus on addressing
one or few particular issues [5,6]. The present report explores the
perceived advantages of new methods for large inference networks
introduced here, though focus is only on the top down approaches, not
least because they use explicit canonical elements of knowledge (Section
1.3) that are assigned equally explicit, essentially statistical, estimates of
probabilities as their degrees of truth or scope (Sections 1.3 and 1.4).
They therefore extend well to the more familiar and pressing use cases of
probability based clinical decision support, Evidence Based Medicine,
public health, and epidemiological analysis [1,2]. Some examples are
given of applications in the life science and healthcare insurance sectors
because these are pressing areas, but also to illustrate how the method-
ologies required differ somewhat, particularly in the claims case.
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1.2. Canonical medical knowledge on computers, and reasoning from it

Elements of knowledge accumulated for top down approaches
constitute a knowledge base [5,7,8], or knowledge representation store (KRS)
to emphasize when the elements are well rendered into canonical repre-
sentations of knowledge readable both by humans and computers. In the
present paper, KRS elements are units of knowledge in the KRS that
directly represent the building blocks of inference nets. MYCIN [7] and

INTERNIST [8] were pioneering medical Expert Systems that exemplify
the rapid growth of in size of KRSs in the 1970s. Respectively, they were
of some 600 elements of knowledge or “rules” concerning medical
microbiology, and some 100,000 concerning internal medicine. Before
the Internet significantly impacted on medicine in the mid to late 1980s
[8], acquisition of knowledge by debriefing human experts locally was
very slow, a problem known as “the Feigenbaum Bottleneck” [9]. Today,
the World Wide Web (WWW) links web pages and people [10], and the
emerging Semantic Web (SW) is an effort to link all data and knowledge
[11]. The SW has gathered more than a trillion KRS elements of knowl-
edge as semantic triples, i.e. statements of knowledge in
subject-relationship-object form, or interpretable as such [12]. A major
feature of the SW for common formats and exchange is the Resource
Description Framework (RDF) [11]. An example of a proposal for using
the SW and its RDF technology for healthcare informationmanagement is

Fig. 1. General Flow and functionalities of SMASH2.

Table 1
Summary of requirements that a prediction for a record be consider a true pos-
itive, a true negative, a false positive or a false negative.

PREDICTION. OBSERVATION. WORKING
MODELS.

AGREEMENT.

Was the brute
force prediction
using both hitlist
and wishlist YES
for the target and
its value (e.g.
‘renal
failure’’¼ ’Y0) on
first line of hitlist?

Does the record
contain target and
its value (e.g. ‘renal
failure’’¼ ’Y0) on
first line of hitlist?

Is there sufficient
match between
the rest of the
record and hitlist
and shortlist, and
an analogous
“degree of
match” defined
from a prediction
using directional
information, to
make the
PREDICTION
applicable?

Increment count
of true positive
TP, or false
positive FP,or
true negative TN,
or false negative
FN.

yes yes yes TP
yes no yes FP
yes no no (switches

PREDICTION)
TN

yes yes no (switches
PREDICTION)

FN

no yes yes FN
no no yes TN
no no no (switches

PREDICTION)
FP

no yes no (switches
PREDICTION)

TP

Fig. 2. Example machine learning using the same mining and inference net
algorithms applied to the crisper problem of protein secondary structure pre-
dictions problem using bioinformatics data.
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