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A B S T R A C T

Background: Tumors are highly heterogeneous at the phenotypic, physiologic, and genomic levels. They are
categorized in terms of a differentiated appearance under a microscope. Non-small-cell lung cancer tumors are
categorized into three main subgroups: adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. In
approximately 20% of pathology reports, they are returned unclassified or classified as not-otherwise-specified
(NOS) owing to scant materials or poor tumor differentiation.
Method: We present a radiomic interrogation of molecular spatial variations to decode unclassified NOS tumor
architecture quantitatively. Twelve spatial descriptors with various displacements and directions were extracted
and profiled with respect to the subgroups. The profiled descriptors were used to decipher the NOS tumor
morphologic clues from the imaging phenotype perspective. This profiler was built as an extended version of a
conventional support-vector-machine classifier, wherein a genetic algorithm and correlation analysis were
embedded to define the molecular signatures of poorly differentiated tumors using well-differentiated-tumor
information.
Results: Sixteen multi-class classifier models with an 81% average accuracy and descriptor subset size ranging
from 12 to 144 were reported. The average area under the curve was 86.3% at a 95% confidence interval and a
0.03–0.08 standard error. Correlation analysis returned an unclassified NOS membership matrix with respect to
the cell-architecture similarity score for the subgroups. The best model demonstrated 53% NOS reduction.
Conclusion: The membership matrix is expected to assist pathologists and oncologists in cases of unresectable
tumors or scant biopsy materials for histological subtyping and cancer therapy.

1. Introduction

Most cells of the body are differentiated, which provides them with
unique signatures based on their specialization, such as those of the
kidney-filtering mechanism and heart muscles. However, cancer cells
mutate. As they grow and divide, these cells tend to make erroneous
copies of their DNA, thereby leading to further mutations. Such muta-
tions comprise the underlying cause of heterogeneity. Cancers are
therefore comprised of cells that may appear like the cells from which
they originated (well differentiated), or they may appear nothing like the
cells from which they arose (poorly differentiated) [1].

Non-small-cell lung cancer (NSCLC) is a type of lung cancer grouped
based on the clinical behavior and histological appearance of the cancer
cells. There are subtypes of NSCLC that basically define the different
types of lung cells from which they originated. Adenocarcinoma (ADC) is
usually found in the outer parts of the lung, either peripherally located in

the smaller airways or centrally located in the main bronchus. Squamous
cell carcinoma (SCC) generally arises within the lungs, inside a large
bronchus. Large-cell carcinoma (LCC) is an undifferentiated tumor that
lacks diagnostic features, and therefore a default classification, to some
extent, which is made when other specific histologies have been
excluded [2].

Aside from these three common classification subgroups, 20% of
pathologist reports are returned as not-otherwise-specified (NOS) tu-
mors. This classification status arises mainly because of inadequate tis-
sue; e.g., the biopsy material was scant or the tumor was poorly
differentiated. NSCLC tumors are known to be very heterogeneous. This
means that in an area that appears predominantly SCC, a centimeter
away, for example, may appear predominantly ADC. Hence, a patho-
logical examination based on small biopsy or cytological samples may
not be effective in defining the subgroups because it does not represent
the cell activity or toxicity profile of the whole tumor. In such a scenario,
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misdiagnoses may occur. This is the underlying reason why a pathologist
may choose to define a tumor as NOS. Misclassification of subgroups may
cause inappropriate therapeutic options to be administered, thus leading
to complications. For example, it has been reported that certain drugs,
such as ALIMTA (pemetrexed), can induce fatal bleeding in SCC patients
and should thus be avoided.

As the field of oncology has evolved, the methods of diagnosing a
tumor subgroup have also advanced. Pathologists previously identified
cell activities using the naked eye under a normal microscope or using a
light microscopy technique. The lack of a differentiated tumor, on the
other hand, requires a more sophisticated method, such as immunohis-
tochemistry (IHC), which employs monoclonal antibodies directed
against very specific epitopes on the surface and sometimes in the nuclei
of the target cells, such as TTF-1 for ADC and P63 for SCC [3–5].

However, even the most sophisticated method, such as IHC, is still
impractical in the event of unresectable tumors or scantly available tis-
sue, which may hamper the process of precisely subtyping a tumor. This
has prompted the concept of using the quantitative analysis of a radiomic
approach to quantify tumor heterogeneity through image processing and
data-mining algorithms of routinely acquired computed tomography
(CT) images to decode the unclassified NOS tumors in terms of their cell
architectures.

The ‘-omics’ studies have been long established in research fields,
such as proteomics, genomics, and metabolomics. These relate to the
study of protein, gene, and metabolic structures, respectively. Radiomics,
on the other hand, is an emerging field that converts radiography data
into a high-dimension, mineable feature space using data characteriza-
tion algorithms for hypothesis generation or testing [6–9]. Radiomics is a
set of patterns or image structures, such as points, edges, curves, shapes,
textures, and others, that are numerically represented. Tissue charac-
teristics, such as cell density and metabolic activity, can be visualized
through such diagnostic imaging.

The heterogeneity observed in a tumor is a reflection of the pheno-
typic variation reported to be associated with the underlying gene
expression [10–14]. Radiomics has shown immense potential in aiding
cancer diagnosis and prognosis in the near future. Recent studies on
tumor heterogeneity as captured by tomographic imaging have revealed
it as an emerging approach in disease treatment and prevention [15–17].
The objective of the present study is therefore to decipher the molecular
clues or cell architectures of NSCLC-NOS tumors using the pathologically
defined NSCLC subgroups of ADC, SCC, and LCC information through a
quantitative analysis of radiomics. Through the present work, we strive
to assist the pathologist and oncologist community in improving the
specificity of NSCLC histologic classification by reducing the proportion
of NOS cases.

2. Materials and methods

2.1. Database

The Lung1 dataset, publicly available in the Cancer Imaging Archive
(TCIA) funded by the National Cancer Institute (NCI) was included in the
present study [18]. It consists of the records of 422 NSCLC patients that
were treated at the Maastricht University Medical Center, Maastricht,
The Netherlands, in accordance with Dutch law and approved by the
Institutional Review Boards [19]. For these patients, de-identified pre-
treatment CT scans, manual delineations, clinical data, and survival data
were available.

The CT examinations were acquired using a CT scanner from the
manufacturers CMS and Siemens. The acquisition protocol varied slightly
for different patients depending on the patient's size. Exposure settings
ranged from 120 to 140 kVp with a tube current of 40–80 mAs. The
reconstructed pixel resolution was 0.977 � 0.977, and the images were
reconstructed at 512 � 512 pixel matrices. The slice thickness was
3.0 mm in all examinations, and the convolution kernels were B30s,
B30f, B18f, B19f, and a few others. The number of cases diagnosed for the

well-defined subgroups of ADC, SCC, and LCC were 51, 152, and 114,
respectively.

The remaining were left unclassified (63 of NOS) or unknown (42 of
NA). The inclusion criteria were patients with a measurable tumor size
(>30 mm) and stage III tumors according to Tumor/Node/Metastasis
(TNM) staging. The patients with metastasis were excluded. Hence, 20
patients were curated from each of the ADC, SCC, and LCC cases for the
profiling process, and 28 patients were selected from NOS cases for the
correlation analysis. Demographically, male patients dominated the
constructed dataset, constituting overall 75% of the 88 patients. The
mean ages for each subgroup were 61, 67, for ADC and SCC, respectively,
and 64 for both LCC and NOS.

2.2. Radiomic framework

Fig. 1 illustrates the overall process of the radiomic modeling.
Initially, a tumor is extracted using a semi-automated system in the first
layer. On the middle layer, the descriptors are extracted before submis-
sion to the last layer, where they are profiled or selected based on the
classification performance of the well-defined tumors. Once finalized,
these descriptors facilitate the association of well-defined tumors with
the unclassified tumors.

2.3. Computer-assisted tumor segmentation

A semi-automated computer-aided tumor segmentation method was
employed, as shown in the upper inset of Fig. 1. The contrast-enhanced
CT images first underwent automated thoracic segmentation using
adaptive thresholding [20] and connected component labeling [21,22].
Lung region extraction and nodule candidate detection were performed
using automated seeded region growing [23]. A radiologist with more
than five years of experience supervised the tumor extraction process by
marking and finalizing the target region.

2.4. Descriptor extraction

A second-order statistical texture descriptor, as studied by Elmoez
et al. [24] and called a three-dimensional (3D) co-occurrence matrix, was
usedmainly because it considers the spatial dependence among slices in a
z direction (volumetric data). Similar to a traditional two-dimensional
(2D) co-occurrence matrix, it accumulates the number of pixel pairs
having intensities i and j, and P (i, j). However, this matrix is defined
along a displacement d ¼ (dx, dy, dz), where dx and dy are similar to the
2D case, while dz represents the number of pixels moving along the
z-axis. Twelve statistical features f¼ {f1, f2 …. f12} quantifying the spatial
dependency were extracted from this matrix, as demonstrated in the
Supplementary Table S1.

Spatial dependency extraction requires displacement d and direction
θ of a particular measurand (e.g., a pair of pixels) to be considered. The
more options of d and θ that are considered, the higher is the computa-
tional complexity. However, since it can never be known which pair of
pixels for which displacement and direction will give the most predom-
inant information, all the possibilities must be considered. We thus
employed four displacements and 13 directions, as shown in the Elmoez
work, resulting in the feature vector of size 624.

2.5. Descriptor profiling and membership score assignment

As illustrated by the lowest inset of Fig. 1, the last section is divided
into sub-phases: descriptor selection (genetic algorithm (GA)), multi-
class classification (support vector machines (SVMs)), and membership
score assignment (correlation analysis). It was built as an extended
version of a classic classification framework with the descriptor selection
and correlation analysis embedded as a pre- and post-framework. The
outcome of the overall architecture was a membership matrix (M) that
quantifies the similarity score between an unclassified tumor and the
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