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a b s t r a c t

With the advent of miniaturized inertial sensors many systems have been developed within the last
decade to study and analyze human motion and posture, specially in the medical field. Data measured by
the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the
orientation of the body parts under study. These filters traditionally include fixed parameters, such as the
process and observation noise variances, whose value has large influence in the overall performance. It
has been demonstrated that the optimal value of these parameters differs considerably for different
motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine
motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of
orientation estimation algorithms can be improved, therefore providing physicians with reliable objec-
tive data they can use in their daily practice.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Measuring human motion in an objective way has great
importance in medical applications since it allows for the
improvement of diagnosis and treatment of many diseases. It may,
for instance, help Medical Doctors to evaluate patients suffering
from neurodegenerative diseases which affect the motor system
such as Parkison's [15,35]Q3 . Moreover, it can be a great aid to
increase the efficiency of rehabilitation processes [37], reduce the
risk of falls [12], analyze gait [19], study sleep disorders [36] and
detect regular [2] and unnoticed nocturnal epileptic seizures [29],
among other applications.

Human motion can be assessed and measured in different ways
and, consequently, there are different key points which need to be
considered when choosing between one of the existing systems
and approaches to measure it. The first important factor is to
decide the reference point of the measurement system. There exist
two possibilities, setting a fixed point in space or including it
directly on the moving body. The most common approach of the
former is to place special cameras around the area of mobility of
the patient under study [4]. These cameras, which act as observers
can be based on infrared technology, in which case, they emit

infrared light that is reflected on a series of markers worn by the
patient [38,30]. On the other hand, a combination of standard
cameras and ultrasound technology [22] can be employed to avoid
the necessity of covering the patient with markers [5].

Camera-based systems provide accurate measurements but
their major drawback lies on the limitation of the range of action
and movement of patients to a room. Moreover, they have a
reduced flexibility since the system needs to be recalibrated each
time one of the cameras is set in a new position. Additionally,
complex algorithms need to be applied to extract acceleration and
orientation angles from the markers. On the other hand, if we
choose to use a reference point on the monitored body, our system
will permit performing ambulatory measurements as the subject's
motion will not be bound to a room. In this case, we will need a
device which is worn by the patient and is able to measure relative
acceleration, angular velocity and heading. That is, our system will
require acceleration sensors (accelerometers), angular rate sensors
(gyroscopes) and magnetic field sensors (magnetometers). These
sensors are usually integrated together with other electronic
components such as memory units, processors, transceptors, etc.,
to form Inertial Measurement Units (IMUs) or Magnetic Inertial
Measurement Units (MIMUs).

The data that are gathered by the MIMUs usually require from a
calibration process to transform raw data into meaningful physical
units prior to any further processing. Calibration of inertial sensors
is a popular topic and many works propose different techniques
and algorithms for such a task [8,16,11,9]. Once the data are
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calibrated, they can be processed to infer the orientation of the
body of the patient which is wearing them.

When starting the search of algorithms to estimate body
position, orientation and motion, one can be overwhelmed by the
vast amount of works published within the last decade. All pro-
posed algorithms share some points in common though, as they all
fuse the information coming from all three types of sensors to
improve the precision of the estimates when the sensors are used
separately.

Additionally, it is worth mentioning that the great majority of
approaches rely on the Kalman filter [13,39] to perform such a
fusion.

Another common denominator of orientation estimators is
given by the fact that they all have a set of tunning parameters
which remain constant during the execution and which are of
utmost importance to their performance. This set of parameters
controls the weight which is given by the filter to the observation
when updating the estimation. Usually, in motion monitoring
applications which are based on inertial sensors, the measured
acceleration is considered as the observation. It is a fact that the
estimated orientation is less accurate whenever the intensity of
motion is high, that is, the linear acceleration is not negligible with
respect to the gravity. Therefore, due to the changing nature of
human body motion in terms of intensity, maintaining the same
value of these parameters during execution will decrease the
accuracy of the orientation estimates. This is due to the fact that
the optimal value of the parameters for low and high intensities
differs significantly as it was shown in Olivares [23].

In this work, we demonstrate how we can determine different
motion intensity levels through the use of frequency analysis, and
how we can improve the overall precision of the Kalman Filter by
giving different values to its parameters for each intensity level.
This strategy (adapting parameters according to motion intensity)
is known as gating. More specifically, we will apply two different
approaches: one containing two levels of intensity (low and high)
and another one containing three levels (low, mild and high) and
compare their results with respect to the traditional fixed-para-
meters version. Additionally, for each one of these approaches, we
will study two variations. The first one modifying both Q (process
noise covariance matrix) and R (measurement noise variance)
parameters, and the second one modifying just R, as suggested in
the recent work by Bennett et al. [3].

The remainder of the paper is structured as follows: Section 2
includes a review of the state of the art; next the theoretical
background of the frequency-based intensity detector and gated
sensor fusion are presented in Section 3; experiments carried out
to test the different gated sensor fusion approaches are included in
Section 4 and subsequently discussed in Section 5; finally, con-
clusions and future work are drawn in Section 6.

2. Previous work

2.1. Orientation estimation algorithms

The use of inertial sensors to estimate trajectory and orienta-
tion started in the 1970s. NASA scientists begun to develop algo-
rithms to assist the navigation of spaceships and determine their
position relative to different reference frames.

An example of these early methods are the TRIAD [14] and the
QUEST algorithms [34]. The former algorithm computes a deter-
ministic solution for the orientation using two vector observations,
e.g. measured acceleration and magnetic field, and two vector
references, e.g. the a priori known gravity and local Earth magnetic
field vectors. On the other hand, QUEST is based on the mini-
mization of a loss function in order to calculate the optimal

quaternions describing the orientation. In the context of human
body analysis, these two algorithms exclusively use acceleration
and magnetic field. Therefore, to overcome problems inherent to
linear acceleration in intense motion scenarios, [41] fuse the
estimates of the QUEST algorithm with integrated angular rate by
means of an Extended Kalman Filter.

Different variations of these early approaches have been
designed with the last two decades, specially by Shuster [33],
Markley and Mortari [21], and Marins et al. [20]. The latter work
uses a Gaus–Newton iterative algorithm to compute the qua-
ternion which best relates the gathered acceleration and Earth
magnetic field in the body frame to computed values in the earth
coordinate frame. The quaternion is, then, subsequently fused with
angular rate using an EKF. This configuration provides accurate
results but adds, in exchange, high computational complexity as
the iterative minimization is computed for every new set of
measurements.

Although the use of quaternions is a popular solution to
represent orientation, different examples of non-quaternion esti-
mation can still be found in the literature [28].

Further information about nonlinear orientation estimation
algorithms is available in Crassidis et al. [6] and a comparative
performance study between the most popular approaches can be
found in Young [40].

2.2. Estimation of orientation applied to human body position and
motion monitoring

The miniaturization of inertial sensors in the form of Micro-
electromechanical Systems (MEMS) permitted to develop small,
light and wearable devices which soon started to be placed on
subjects to measure different kinematic parameters.

Many different works have been published in the last 15 years
in which inertial sensors are employed to analyze human motion.

Zhang et al. [42] propose a Hybrid Dynamic Bayesian Network
to include nonlinear hip angle dynamics in the kinematic model.
In addition, a Gaussian Particle Filter to compute the hip angle
during gait is employed. The filter is fed with inertial data mea-
sured by a device which is worn on the thigh by the subjects.

Luinge et al. [17] describe a method which uses a kinematic
model that includes constraints in the elbow nature to estimate
the orientation of the forearm with respect to the upper arm. They
apply a least squares filter on triaxial acceleration and angular rate
to minimize the adduction angle. This method is not accurate
enough since the errors can be as high as 40° RMS. In a different
work Luinge and Veltink [18], they describe a Kalman filter which,
again, only uses acceleration to estimate orientation. In this case,
the filter is only tested under quasi-static conditions obtaining an
average error of 2° RMS.

Roetenberg et al. [31] present a complementary Kalman Filter
to compute the orientation of different body segments through the
fusion of acceleration, angular rate and magnetic field. In addition
to the orientation, the filter also estimates the gyroscope error bias
and the magnetic disturbance error. Their design obtains an static
error (low intensity) of 1.4° RMS and a dynamic (high intensity)
error of 2.6° RMS.

Favre et al. [7] show two different methods to measure rotation
fusing triaxial angular rate and acceleration. The algorithms esti-
mate the orientation quaternion during instants in which the
subject is quasi-static and update the estimated value when the
subject moves using the gyroscope measurements.

Analogously, Sabatini [32] proposes an algorithm based on an
interpolation technique to estimate orientation of the legs during
gait. The method provides an average 14.6° RMSE during a single
gait cycle and 14.8° RMSE for an extra second cycle. Moreover, the
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