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a b s t r a c t

Background and objective: Body sensors are finding increasing applications in the self-monitoring for
health-care and in the remote surveillance of sensitive people. The physiological data to be sampled can
be non-stationary, with bursts of high amplitude and frequency content providing most information.
Such data could be sampled efficiently with a non-uniform schedule that increases the sampling rate
only during activity bursts.
Methods: A real time and adaptive algorithm is proposed to select the sampling rate, in order to reduce
the number of measured samples, but still recording the main information. The algorithm is based on a
neural network which predicts the subsequent samples and their uncertainties, requiring a measurement
only when the risk of the prediction is larger than a selectable threshold.
Results: Four examples of application to biomedical data are discussed: electromyogram, electro-
cardiogram, electroencephalogram, and body acceleration. Sampling rates are reduced under the Nyquist
limit, still preserving an accurate representation of the data and of their power spectral densities (PSD).
For example, sampling at 60% of the Nyquist frequency, the percentage average rectified errors in esti-
mating the signals are on the order of 10% and the PSD is fairly represented, until the highest frequencies.
The method outperforms both uniform sampling and compressive sensing applied to the same data.
Conclusion: The discussed method allows to go beyond Nyquist limit, still preserving the information
content of non-stationary biomedical signals. It could find applications in body sensor networks to lower
the number of wireless communications (saving sensor power) and to reduce the occupation of memory.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There are applications in which sampling at the Nyquist fre-
quency is not efficient. For example, sparse signals are decom-
posed using a few significant components in compressive sensing
(CS) [1]. Reducing the sampling rate is useful when many body
sensors are used to monitor continuously the lifestyle of a healthy
person or the condition of sensitive people [2]. Sensors are light-
weight, non-invasive, wearable or embedded in cloth and they
include a wireless communication with a storage and decision
making system. Many physiological data can be sensed, e.g.,
acceleration, bioelectric activity, blood pressure, galvanic skin
response, and breathing [3]. Monitoring these data supports the
individual self-assessment which allows to develop a personalized
health care that helps healthy people to maintain their well-being
[4]. Moreover, many diseases can benefit from a continuous

monitoring, like cardiovascular problems, diabetes, Alzheimer's
and Parkinson's diseases, renal failure, chronic obstructive pul-
monary disease, post-operative conditions, stress or sudden infant
death syndrome [5]. The remote patient monitoring could allow a
rapid intervention when needed, developing an individualized
care [6], with positive effects on the management of clinical ser-
vices and on the quality of life of patients [7]. Many additional
applications of body sensors are found, e.g., in military monitoring,
interactive gaming [8], recognition of dietary activity [9], rehabi-
litation [10], personal information sharing and secure authenti-
cation [11].

Some recorded signals can show burst activity, reflecting the
alternation of periods in which the investigated physiological
system is either silent or active: for example, surface electro-
myogram (EMG) during cyclic tasks [12] or in pathological con-
ditions (e.g., motor tremor induced by epileptic seizures [13]);
electrocardiogram (ECG), with the QRS complex including most of
the high frequency content [14] (unless pathological behaviors
arise [15]); electroencephalogram (EEG), when the brain is per-
forming different tasks or in pathological conditions (e.g., seizure
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in epileptic patients [16]); body acceleration during different
activities [18] or in pathological conditions [19].

When data contain bursts, a high sampling rate is required if a
uniform sampling is adopted, even if there are portions of the
signal which could be down-sampled without loss of information.
A non-uniform sampling, using a high sample rate only during the
bursts, would allow both memory and energy saving (very
important for wireless sensors, which are supplied with scarce
resources [20]).

A predetermined non-uniform sampling schedule cannot be
established for biomedical applications, but the sampling should
be adaptively defined on the basis of the data. Adaptive techni-
ques, like AZTEC, CORTES, SLOPE, or Fan [21], have been developed
specifically for ECG data compression. They can reduce con-
siderably the number of acquired samples by a non-uniform
sampling schedule, but they do not allow a real time modulation
of the sampling frequency, as they require to measure each sample
in order to decide if to keep it. A real time adaptive solution was
proposed in [14], increasing the sampling rate when the signal
curvature was high. The method showed higher performances
than uniform sampling, but a-priori knowledge on the signal was
required, limiting versatility [22]. In this respect, CS is considered
more generally applicable [22], showing low compression ratio
(CR, ratio between number of acquired versus original samples)
and good accuracy [23,24]. However, it recovers the signal by an
offline procedure applied on time epochs, introducing a delay. On
the other hand, a real time adaptive sampling schedule could
allow to save energy (to sample and transmit data) and to
implement simple decision making control even on the sensor
(e.g., a fall detector based on a threshold on the body acceleration).
Thus, a versatile adaptive sampling algorithm could provide an
important contribution.

The method proposed in [20] increased automatically the
sampling rate when the investigated signal became unpredictable
or provided high frequency contributions. A conceptual framework
was discussed in [20], showing different general applications, but
without optimizing the algorithm on specific data and the under-
sampling was not measured relative to Nyquist frequency (pro-
blem affecting also the literature on CS applied to biomedical data
[1], where approximation errors at specific CR are often provided
without caring about the possible over-sampling of the original
signal; see Discussion for details). The present work investigates
these open issues. The algorithm proposed in [20] is improved, by
an automatic tuning on the data, based on an offline analysis of a
training set. The adaptive algorithm is compared with uniform
sampling and CS with the same CR, when applied to different
biomedical signals sampled at the Nyquist frequency: EMG, ECG,
EEG and body acceleration.

2. Materials and methods

2.1. Adaptive sampling algorithm

The adaptive sampling is based on a prediction algorithm and
on its application to estimate the uncertainty of a predicted
sample. It can be split into three parts:

1. selection of optimal predictors (based on the theory of time
series embedding, Section 2.1.1);

2. training of an adaptive algorithm to predict the next sample
(a multi-layer perceptron, MLP, was used, Section 2.1.2);

3. real time schedule of the sampling rate (based on the uncer-
tainty of the prediction, Section 2.1.3).

2.1.1. Time series embedding
Embedding theory was applied to the data [25–27]. Specifically,

the time series were supposed to be extracted from a deterministic
physiological system described by a set of unknown deterministic
rules

d x!
d t

¼ F
!ð x!Þ ð1Þ

where x! is the vector of state variables of the system and F
!

is a
set of functions called the vector field (defining the evolution of
the state variables), which was assumed not to be an explicit
function of time (i.e., the system was assumed to be autonomous).
The recorded time series yðtÞ (where t from now on is a discrete
time variable) was assumed to be extracted from the system
through a measurement process described by an unknown func-
tion gðU Þ of the state variables:

yðtÞ ¼ gð x!ðtÞÞ ð2Þ
Given a single measurement, a vector of time delayed versions

(delayed coordinates) was built [25]

Y
!ðtÞ ¼

yðtÞ
yðt�τÞ

⋮
yðt�ðm�1ÞτÞ

2
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3
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where the time delay τ was chosen so that two delayed coordi-
nates provided different information and the number m of ele-
ments of the vector is called the embedding dimension (as it is the

dimension of the so called phase space in which the trajectory Y
!

ðtÞ is embedded) [25–27].
The time delay τ and the embedding dimension m were com-

puted as follows.

� Time delay. The mutual information of the original and delayed
data was computed:

MIðτÞ ¼
Z
A

Z
B
PABða; bÞ ln

PABða; bÞ
PAðaÞPBðbÞ

� �
dadb ð4Þ

where the time series yðtÞ and yðt�τÞ are considered as random
variables A and B, respectively, with joint probability density PAB

ða; bÞ and marginal probabilities PAðaÞ and PBðbÞ, respectively.
The minimum between the delays corresponding to the first
local minimum or to a 90% decrease of MIðτÞ was selected as the
time delay τ of the delayed coordinates.

� Embedding dimension. Cao's method was used [27,28]. It is
based on the number of points of the trajectory, described by
the vector in (3), which are neighbors of other points of the
trajectory itself. When increasing the embedding dimension by
adding one element to the vector (3), neighboring points which
were close only due to the projection of the trajectory in a low
dimensional space (false near neighbors) may turn away. Thus,
the number of neighboring points decreases by increasing the
embedding dimension, till false neighbors are present. The
minimum phase space dimension allowing to remove the false
near neighbors was selected as the embedding dimension m: it
allows to identify uniquely the dynamics of the trajectory and
possibly to predict it. Specifically, Cao's method investigates the
following function of the embedding dimension [28]

E1ðmÞ ¼ Eðmþ1Þ
EðmÞ ; where EðmÞ ¼ 1

N�mτ

XN�mτ

i ¼ 1

‖Ymþ1ðiÞ�Ymþ1ðnði;mÞÞ‖
‖YmðiÞ�Ymðnði;mÞÞ‖

ð5Þ
where N is the number of considered samples of the time series,
‖U‖ is the absolute distance norm, YmðiÞ is the ith sample of the
reconstructed vector with embedding dimension m and nði;mÞ
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