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A B S T R A C T

The paper aims to introduce quality measures that can evaluate how well the Self-organizing Maps method
performs in transitional stages. The errors have been computed with respect to the spatial and temporal prop-
erties of the data and in relation to the data gap significance. Temperature and salinity data collected in the
central Adriatic Sea at six stations during 196 field cruises carried out between 1963 and 2011 have been used
for the mapping of ocean patterns and computation of the respective errors. The errors resemble both the sta-
bility of ocean regimes and variability of patterns that are documented in the investigated region. As the data
collection methodology and approach have changed over time, the errors may be a good indication for the
presence of bad data in a series, which may then be controlled by other quality-check techniques.

1. Introduction

Machine learning represents an optimization process in which a
solution (optimal or extremal) has been searched. Supervised machine
learning is a well-defined process; by definition, there exists a solution
to the problem. Unsupervised machine learning has no “golden rule”,
and solutions are not labelled; thus, there is no predefined error metric
to evaluate the quality of learning, making unsupervised learning a
much less well-defined problem (Murphy, 2012). Therefore, un-
supervised learning has a lack of the objective evaluation of the accu-
racy (Hastie et al., 2009; Murphy, 2012). Hastie et al. (2009) state that
with unsupervised learning, we have no measurements of the outcome
and there is no direct measure of learning success, pointing out that the
main task of unsupervised learning is to organize (cluster) the data.
However, Duda et al. (2001) emphasize that the problem of un-
supervised learning is too important to abandon just because exact
solutions are hard to find. Moreover, the lack of exact solutions or
objective measures of an evaluation comes as a side effect of un-
supervised learning, which is often implemented on problems with
large amounts of unlabelled data (Duda et al., 2001), i.e., on problems
that do not utilize a gold standard and/or when there is no ground
truthing available (e.g., Bruzzone and Prieto, 2000; Volkovs and Zemel,
2014; Holmes, 2014).

The Self-Organizing Maps (SOM) method, like principal component
analysis (PCA), can be utilized as a dimensionality reduction technique.
The reliability assessment of PCA dimensionality reduction is usually

referred by unexplained variance (variance unexplained by the pro-
posed model in the reduced space), and it is given as the sum of squared
distances (Preisendorfer and Mobley, 1988). In contrast to PCA, SOM is
a mapping technique that performs nonlinear dimensionality reduction
by mapping the input data to the nearest (the winning) neuron in the
SOM lattice. Whenever an interval (or in an N dimensional space N-D
sphere) is represented as one point (the winning neuron), a dis-
cretization or quantization is done since the method maps a larger
(continuous) set to a smaller (discrete) set. Thus, the quantization error,
which is also usually measured as the sum of squared differences (SSD),
denotes the distortion (Vesanto et al., 2003).

In real case applications, and specifically in geosciences, SOM is
used to identify patterns and regimes of the system (atmosphere, ocean,
etc.), which are represented by the neurons in the SOM lattice (Kirk and
Zurada, 2004; Bação et al., 2005; Gorricha and Lobo, 2012; Kalinić
et al., 2015a). As there is no any statistical a priori request for the input
data for the successful application of an SOM model, the SOM model
also became widely used in marine biology (Bandelj et al., 2008; Šolić
et al., 2018) and environmental studies (Ley et al., 2011; Toth, 2013).
The SOM model was also used to overcome insufficient or multiple
information that can be extracted by either classical statistical methods
or Monte-Carlo simulations (Herbst et al., 2009).

Reliability of SOM can be utilized by analyzing quality of con-
vergence and generated maps (Tatoian and Hamel, 2018), analyzing
different quantization and topographic errors (Uriarte and Martín,
2008) and quality of topology preservation for different initial
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condition (Villmann et al., 1997), map size and sampling variability
(Cottrell et al., 2001).

The widely used method to get the quality of the SOM model is
trying different SOM architectures, mainly changing the size of the
reduced space and choosing the one that maximizes the information
content (Liu et al., 2006; Vilibić et al., 2011). A bootstrap method may
be used for choosing the best matrix size for a certain dataset (Cottrell
et al., 2001; Bodt de et al., 2002). Additionally, it is possible to apply a
clustering method over SOM with a large number of map units and then
validate the goodness of clusterization. Finally, a double-step cluster
procedure can indirectly give the quality of SOM (Vesanto and
Alhoniemi, 2000; Solidoro et al., 2007, 2009; Šolić et al., 2018).

However, research studies were mainly focused on the determina-
tion of patterns and their sensitivity/reliability (Joutsiniemi et al.,
1995; Matsuda et al., 2014; Kalinić et al., 2015b; Vilibić et al., 2016a,
2016b), while the question of how accurately patterns represent rare
and odd events that usually occur in transitional stages of the system
were slightly out of focus. Normally, the goodness of fit of the SOM
method to the data is assessed through quantization error and topo-
graphic error (Kohonen, 2001; Liu et al., 2006), of which the first is the
average distance between each data vector and the winning neuron,
while the second is the percentage of the data vectors for which the
winning neuron and its runner-up are not neighbouring units. The
lower are both measures the better is quality of the SOM mapping.
However, none of these measures is equivalent to the common mea-
sures used in quality assessment of data mapping in geosciences, where
bias and root-mean-square-error is normally used for assessment of the
goodness of fit of a model to the data (Hyndman and Koehler, 2006). In
this paper, we aim to provide a measure that is equivalent to the
classical statistical measures and can evaluate how well the SOM
method performs in transitional stages/oscillations, i.e., how accurately
the SOM patterns represent the real state of the system. We named the
measure as the winning error, and it measures between the winning
neuron and the respective data. We tested the methodology on the long-
term oceanographic series collected in the Adriatic Sea over several
decades (1963–2011) and focused on the variability and distribution of
error estimates. Section 2 describes the methodology and the data used
in the study, Section 3 presents the results and discussion, Section 4
presents the conclusions.

2. Data and methods

2.1. SOM method, performance metrics

Traditionally, Self-Organizing Maps are classified as artificial neural
networks that differ from typical artificial neural networks in the sense
that they utilize competitive algorithms rather than error-correction. In
general, SOM is an unsupervised learning method that can be related to
k-means clustering but preserves the topology of input data, which
makes it particularly appealing as a dimensionality reduction tech-
nique, especially given that SOM does not require a priori assumptions
on the nature of data. Thanks to these properties, SOM was presented as
a method that reduces dimensionality using the nonlinear projection of
input data onto a two-dimensional grid. The input data for the SOM
model is matrix DMxN with vectors containing ordered information,
data, from one experiment. In the learning stage of the SOM process,
the data is introduced to SOM lattice with k neurons and the winning
neurons …C C( )k1 are updated to match the input data. For this reason
the winning neurons are often referred to as best matching units
(BMUs) or codebook vectors. In the mapping phase, the data, given by
the column vector D( )i , is associated to the nearest among the winning
neurons:

= − ≤ − ∀ ∈K D D C D C l k{ ( ) ( ) , [1, ] }.k i i k i l
2 2 (1)

Each column vector D( )i describes the measured state of the system

at time i, denoted as Si. The input data matrix D( ) can now be re-
presented in compressed form if neurons C( )i , are used to represent the
system states. After analysis, one neuron C( )k with the shortest
Euclidian distance is associated with the data vector D( )i , e. q. quanti-
zation is performed, and each state of the system is substituted by its
approximation:
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The distance varies between the data and shows the quality of the
data vector projection to the winning neuron. The quality of this non-
linear mapping is normally assessed by two measures: the quantization
error that quantifies the average distance between each data vector and
the BMU, and the topographic error that gives the percentage of the
data vectors for which the first BMU and the second BMU are not
neighbouring units. The lower the errors are, the better the SOM model
fits the input data (Kohonen, 1982, 2001, 2013).

However, these measures are somehow not comparable to measures
that are frequently used in geosciences, such as root-mean-square-error,
which is normally used for assessing variability in the data coming from
linear systems. Consequently, a large number of applications of the
SOM to geosciences and environmental data tend to avoid an assess-
ment of representativeness of the SOM method to the data. Therefore,
to assess the variability of the data, we introduced the codebook error
(CBE) as a normalized quantization error of a specific neuron, i.e., CBE
is given as the error between each codebook vector (or BMU) and the
elements of the set:
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where ∗. stands for the Hadamard (elementwise) product of vectors, and
K# k stands for the cardinality (the number of elements) of the set Kk.

The normalization is done with respect to the number of elements of the
set, i.e., as the average quantization error for a given codebook vector
or set representative. In contrast to quantization error, which is equal to
the overall distance between the winning neurons and the data, the CBE
is calculated as the root-mean-square-error between one codebook
vector and data in time when that codebook vector is the winning
neuron.

Thus,CBEk explains the expected quantization error for each state of
the system and can be used to visualize the spatial distribution of RMSE
if the winning neuron is used to represent the data (Kalinić et al.,
2015b). When the winning neuron (BMU) has been used to represent
the data, a quantization has been performed. Thus, CBE can be observed
as a special method to measure the quantization error or distortion
made when data is represented by its associated BMUs. While CBE well
explains the spatial distribution of the error, it might not well explain
the temporal changes that occur when the system is in a transitional
stage. The transitional stage can vary in duration, have oscillations and
overall explain different events. While the temporal change of the
system can be visualized by the temporal evolution of BMUs, neither
quantization error nor CBE answer if the temporal evolution of BMUs
reliably represents the system in its transitional stages.

To measure how the SOM method performs at a specific time in-
terval i, we define the winning element error WEE( ):

= − ∗ −WEE D S D S( ˆ ). ( ˆ ) .i i i i i (4)

Notice that WEE is a vector. To assess the error in transitional
stages, scalar quantization error could be measured at each time in-
terval:

= − = −ε S S D Sˆ ˆ .i i i i i2 2 (5)

which is equivalent to:
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