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ABSTRACT

Polyline simplification is an important task in map generalization. Several solutions have been developed
in order to perform this task automatically, but the vast majority of them consider that the objective line
to simplify is lying on the plane. One of the most widely used methods is the so-called Douglas-Peucker
algorithm, which is fast and in most cases produces good results. However, the Douglas—-Peucker method
was defined in its original form in order to be applied to polylines contained in the Euclidean 2D space,
and it can lead to inconsistent results such as self-intersections. In this work, a robust (results without
self-intersections) variation of the Douglas-Peucker for polylines on the surface of the sphere is pre-
sented. It produces correct results regardless of the morphology of the original line and the tolerance
parameter size.

The algorithm is coded in standard C99 and it can be compiled for serial or parallel execution via
OpenMP. Both, the algorithm itself and a program implementing it are distributed as free software. The
solution validity was tested using the GSHHG geography database, which can be obtained free through
the Web. Results about output accuracy, execution speed, and parallel implementation scalability are

presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Polyline simplification is an important task in map general-
ization. By using the adequate method, an accurate representation
of the original elements should be obtained, while all redundant
information in the original lines should be eliminated in keeping
with the new scale. The main features in a map subject to be
generalized by these techniques are shorelines, lake perimeters,
rivers, roads, contour lines, etc. Line simplification is used not only
in classical paper map series, but also in web services related to
geographic information systems (Cecconi et al., 2002; Harrower
and Bloch, 2006).

One of the most widely used methods in practice is the so-
called Douglas-Peucker algorithm (Douglas and Peucker, 1973),
mainly because of its ease of implementation, its high execution
speed, and the results quality in most cases. By retaining a set of
points from the original polyline, this method discards those out of
tolerance from the generalized line. The main limitation of the
Douglas-Peucker technique is the possibility for the resulting
polyline to contain self-intersections (Saalfeld, 1999); hence, that
technique would have to be considered non-robust. In addition,
the original algorithm was defined only for polylines in the Eu-
clidean 2D space, so it cannot be applied (in a consistent geometric
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sense) to data on the surface of the sphere, considering it as the
first approximation to the Earth shape.

The original Douglas-Peucker algorithm could be applied di-
rectly to the polylines on the sphere using geographic coordinates,
but the results would only be correct (where correct must be un-
derstood as below a level of admissible error) for very small areas
where meridian arcs have approximately the same dimensions as
parallel arcs. Another solution to the problem involves the original
data projection onto the plane using a cartographic projection,
then apply the Douglas-Peucker method to the resulting polyline,
and finally reproject the resulting data onto the sphere. This ap-
proximation has two problems: (i) there is a computational time
spent in the projection steps, which could be critic in some ap-
plications or when low-power hardware were used, and (ii) there
is no cartographic projection in which the Euclidean geometry can
be used in a general case (distance computations in arbitrary di-
rections, intersection checking between segments, etc.; see for
example Bugayevskiy and Snyder, 1995). The problem (ii) is the
main one; the cartographic projection approximation can be more
suitable than working directly in geographical coordinates for
small areas and relative low tolerance values, but it can still suffer
inaccuracies working with polylines occupying large areas, where
the used projection deformation can vary in high values between
different zones.

In Burt (1989), a spherical version of the Douglas-Peucker
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method is described. By using rotations in the Euclidean 3D space,
the original Douglas-Peucker algorithm is adapted to work with
polylines on the surface of a sphere, so the distances are con-
sidered in the correct way as great circle arcs. However, Burt's
approximation has the same weak point as the original algorithm,
i.e., it can lead to non-robust results (self-intersections) for some
original polyline configuration or/and due to high tolerance
parameter values.

In Pallero (2013), a new robust Douglas-Peucker-based algo-
rithm for line simplification on the plane is developed. Based on a
sequence of segment intersection tests, robust results are achieved
whatever the shape of polyline and the working tolerance are.

In this paper, the method presented in Pallero (2013) is adapted
to work on the surface of the sphere using some ideas from Burt
(1989). The new algorithm is explained in detail and its im-
plementation in C is put under a free software license. In addition,
the feasibility of its parallel execution is analysed using both
standard x86 (64 bits) PC microprocessors and new ARM based
low power boards, performing a set of tests employing data from
the GSHHG geography database (Wessel and Smith, 1996). Finally,
the main conclusions about performance and algorithm quality are
drawn.

It should be noted that the algorithm, as the original Douglas-
Peucker one, works only with individual polylines, so when a set
of lines (e.g. contour lines) is generalized, intersections could ap-
pear between them.

2. Generic robust algorithm on the plane

In Pallero (2013), a Douglas—Peucker-based robust method for
line simplification on the plane is described. Given a polyline
composed of a set of points, and after a length tolerance for point
rejection is established, the algorithm comprises the following
steps:

1. Taking the last point (index number L in the original line) added
to the output line (in the first step of the algorithm it will be the
starting point), together with the vertex L+2, forms the base
segment. Then, the distance between the vertex L+1 and the
base segment is computed, and is compared with the estab-
lished tolerance.

2. If the computed distance does not exceed the tolerance, a new
base segment is created between the vertices L and L+3, and
the distances between it and all the intermediate points from L
to L+3 are computed again. While the greatest of these dis-
tances does not exceed the predefined tolerance, new base
segments will be created between points L and L+ 4--L+n
from the original line. In the limit, we could reach the last point
from the original line.

3. When a base segment L/L + k is found for which the distance to
the farthest intermediate point is greater than the tolerance, the
vertex L + k — 1 will be a candidate to add to the output line. All
vertices between L and L + k — 1 are guaranteed in tolerance
because the base segment L/L + k — 1 was checked in the pre-
vious step.

4. In order to prevent future self-intersections, the possible in-
tersections between the base segment L/L + k — 1 and the re-
maining segments of the original polyline from L + k — 1 to the
last point are checked. If an intersection is found, the base
segment is defined as L/L + k — 2 and the segment intersections
are tested again until no crosses are found. Then, the base
segment can be defined generically as L/L + k — 1 — i after this
step, where i is 0 if no intersections were found. In the praxis, it
may be expected that the possible intersections be located in
close proximity to the base segment, so, in order to save

processing time, the intersection checking could be not ex-
tended to the original line end, but only for a determined
number of segments from point L + k — 1 onwards. If this check
limitation is used, it must be taken into account that the algo-
rithm loses its robust character, so a previous study about the
number of segments to check is needed.

5. In this step, the possible intersections between the base seg-
ment L/L+k-1-i and the previous simplified polyline
computed segments are checked. If an intersection is detected,
the base segment is defined as L/[L+ k-1 -1i - 1 and the in-
tersection test is repeated until no intersections are found. As in
the previous case, the segment number for checking can be
fixed in order to save computational time. Finally, the base
segment is defined as L/L + k — 1 — i — j, where j is 0 if no in-
tersections were found. In the worst case, the base segment
after steps 4 and 5 could be defined as the segment L/L + 1 in
the original polyline.

6. We go back to the first step. The vertex L + k — 1 —i —j is ad-
ded to the simplified polyline and is considered now the initial
vertex for the next base segment.

7. The algorithm ends when the last base segment has as final
vertex the last point from the original polyline, all the inter-
mediate vertices are in tolerance, and no intersection exists
between this last base segment and any of the previous seg-
ments forming the simplified polyline.

Suppose the N vertices of the original polyline stored in an
array of indices from O to N—1. Fig. 1 shows the flowchart de-
scribing the explained algorithm, where the simplified polyline
vertices are saved after the robust process.

3. Robust algorithm on the surface of the sphere
3.1. Non-robust part of the algorithm

In order to modify the Douglas-Peucker-based algorithm to
work with data on the surface of the sphere, the key task consist in
computing the distance between the base arc' and the points
between its extremes using the spherical geometry.

The defined task could be carried out via spherical trigono-
metry as we have in each case the vertex coordinates defining a
spherical triangle (the extremes of the base arc and the points to
check), so it is easy to define a formulation in order to compute the
required distance from the test points to the base arc. However,
the high number of trigonometric functions involved in this
computation will penalize the execution speed of the whole al-
gorithm, so some work around in order to mitigate that this effect
is mandatory. In Burt (1989), a solution based on rotations in the
Euclidean 3D space is proposed.

Suppose a base arc AB (henceforth, the working sphere will be
the unit sphere) and a test point P, all of them with its coordinates
(&4 M), (¢ 28), and (gp, 4p), Where @ stands for latitude and 4 for
longitude. In order to compute the spherical distance between the
point P and the arc AB without any spherical triangle resolution
(except for special cases, which will be explained later), and in-
spired in Burt (1989), the next algorithm is proposed:

1. Rotate the original cartesian geocentric coordinate system in a
such way that the base arc AB becomes AB, contained on the
new system Equator, with the vertex A lying on the origin
(@ =0,24=0).

! Henceforth, the term base arc will be used instead of base segment, as the
algorithm described is the one on the surface of the sphere.
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