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a b s t r a c t

The 2-D approximation functions based on a general exact 3-D plate solution are used to derive locking-
free, rectangular, 4-node Mindlin (i.e., first-order plate theory), Levinson (i.e., a third-order plate theory),
and Full Interior plate finite elements. The general plate solution is defined by a biharmonic mid-surface
function, which is chosen for the thick plate elements to be the same polynomial as used in the formu-
lation of the well-known nonconforming thin Kirchhoff plate element. The displacement approximation
that stems from the biharmonic polynomial satisfies the static equilibrium equations of the 2-D plate the-
ories at hand, the 3-D Navier equations of elasticity, and the Kirchhoff constraints. Weak form Galerkin
method is used for the development of the finite element model, and the matrices for linear bending,
buckling and dynamic analyses are obtained through analytical integration. In linear buckling problems,
the 2-D Full Interior and Levinson plates perform particularly well when compared to 3-D elasticity solu-
tions. Natural frequencies obtained suggest that the optimal value of the shear correction factor of the
Mindlin plate theory depends primarily on the boundary conditions imposed on the transverse deflection
of the 3-D plate used to calibrate the shear correction factor.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Shear deformation plate theories provide dimensionally
reduced models for the structural analysis of flat solid bodies that
may be moderately thick. The simplest among these theories is
usually attributed to Mindlin and assumes that the transverse
shear stresses are constant throughout the plate thickness [1–4].
The discrepancy between the predicted and actual shear behavior
is corrected with an extrinsic shear correction factor. The Mindlin
plate theory has survived decades of engineering practice showing
that it is easy to use and gives accurate results for a wide range of
real-life problems. The paper by Hrabok and Hrudey [5] delivers an
overview on the early finite element developments that first
extended the application of the Mindlin and classical Kirchhoff
plate theories to modern, geometrically complex engineering
structures. The Mindlin plate or, more aptly, shell finite elements
that are nowadays used by swarms of engineers through software
like Abaqus, Ansys and LS-DYNA are largely based on the works of
Hughes et al. [6–10] and Belytschko et al. [11–14]. Another branch
of shell elements that can be found, for example, in Adina, are the
MITC elements by Bathe et al. [15–18].

Regardless of the sweeping success of the Mindlin plate theory,
which is also known as the first-order shear deformation plate the-
ory (FSDT) due to a linear displacement variation through the plate
thickness, it is sometimes necessary to use a plate theory that
describes more accurately the actual plate displacements, strains
and stresses. To this end, the third-order shear deformation plate
theory (TSDT) by Reddy [19,20] offers an alternative to the FSDT,
for example, when the interlaminar stresses of a composite plate
are of interest, by accommodating quadratic variations of the
transverse shear stresses with respect to the plate thickness coor-
dinate. Moreover, the TSDT does not require a shear correction fac-
tor, the determination of which can be cumbersome for composite
plates, in particular. However, the total differential order of the
governing equations of the TSDT is higher than that of the FSDT
causing the analysis of the TSDT to be more laborious. In terms
of finite elements, a typical four-node plate element based on the
FSDT has three degrees of freedom at each node, whereas an ele-
ment founded on the TSDT has five degrees of freedom (four rota-
tions) at each node requiring ultimately considerably more
computational effort.

We find that it would be convenient to have a plate model that
both carries the benefits of Reddy’s TSDT, and retains the simple
mathematical structure of Mindlin’s FSDT. It is worth noting that
if the latter feature is achieved, many of the analytical and numer-
ical methods applicable in the context of the Mindlin plate theory,
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including recent isogeometric developments [21–26], could be
applied with little additional effort to the new plate model. Fur-
thermore, the inclusion of the new model into commercial finite
element software could be carried out following the footsteps of
current implementations. We recently showed that it is possible
to develop, within a well-defined interior framework, such plate
models that combine the pros of the FSDT and TSDT [27]. We found
that the Mindlin plate theory is in fact a special case of a general
interior elasticity solution for a linearly elastic three-dimensional
plate. Moreover, the solution includes third-order models, namely,
Levinson and Full Interior plates, as other special cases. The equi-
librium equations in terms of stress resultants are of the same form
for all three theories and they do not include any higher-order
stress resultants kin to those in the TSDT. In the present paper,
we develop rectangular finite elements for the shear deformable
plate models that are included in the 3-D interior elasticity
solution.

In the remaining sections, we first present a brief overview on
the interior framework for plates on the basis of our earlier works
on the topic [27,28]. This is followed by the formulation of the rect-
angular finite elements for Mindlin, Levinson, and Full Interior
plates by Galerkin’s method of weighted residuals. The shape func-
tions are obtained from the 3-D elasticity solution and they are the
same for each 2-D element. The stiffness and consistent mass and
geometric stiffness matrices are attained in closed-form through
analytical integration. The shape functions satisfy the Kirchhoff
constraints exactly so that each derived element reduces to a
Kirchhoff element when the plate thickness tends to zero. Finally,
buckling and natural frequency eigenproblems are studied using
the novel, locking-free rectangular plate elements, and the perfor-
mance and accuracy of the 2-D Mindlin, Levinson and Full Interior
elements against each other and against 3-D plate solutions are
evaluated. For further understanding on shear deformable plate
theories, the physical crux of the numerical studies is to take a
detailed look at the meaning of the shear correction factor of the
Mindlin plate. The value of this factor is shown to depend notably
on the boundary conditions of the 3-D plate which is used to cali-
brate the factor.

2. Overview on interior plates

Here, we first consider a plate with stress-free top and bottom
faces and then focus on the interior stress state of the plate. The
general 3-D solution to the interior problem is reviewed and pre-
sented in the conventional form of 2-D plate theories. We discuss
the total potential energy of plates without boundary layers.

2.1. Starting point – stress-free faces and the interior solution

Let us consider a three-dimensional linearly elastic, isotropic,
homogeneous plate of constant thickness h in Cartesian xyz-
coordinate system. The stress boundary conditions on the faces
of the plate read

rzðx; y;�h=2Þ ¼ sxzðx; y;�h=2Þ ¼ syzðx; y;�h=2Þ ¼ 0: ð1Þ

The most general state of stress within this plate can be decom-
posed into three parts: (1) interior state, (2) shear state, (3) Pap-
kovich–Fadle state [29–31]. Detailed, general 3-D elasticity
solutions for plates with stress-free faces which account for all
these three states have been given by several authors [32–37]. It
has been proven that both the shear and Papkovich–Fadle
states are predominantly related to edge effects [29]. Our focus will
be on the interior bending state, also known as the ‘‘plate theory
part” [29].

The rectangular, linearly elastic interior plate of interest to us is
depicted in Fig. 1. The length and width of the plate are 2a and 2b,
respectively. The general interior bending solution in terms of dis-
placements can be written as [36]
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where G and m are the shear modulus and Poisson ratio, respec-
tively. In addition, we have
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Every term in the biharmonic mid-surface functionWðx; yÞ (taken as
a polynomial later) includes an arbitrary constant coefficient and
these coefficients will correspond to the nodal degrees of freedom
of the plate finite elements. The 3-D displacements Ux;Uy and Uz

calculated from Eqs. (2)–(4) satisfy the 3-D Navier equations of
elasticity.

At this point, the meaning of the ‘‘interior state” can be
explained as follows. When all three parts of the general stress
state are accounted for, boundary conditions at the outer edge of
the boundary layer give rise to exponentially decaying edge effects.
Once these edge effects have decayed entirely with distance from
the edge, the interior solution prevails. In other words, the interior
solution represents a plate section which has been cut out from a
complete plate far enough from the actual lateral edge. The ratio-
nale for this description is well-embedded into the above solution
– the third-order throughout-thickness displacement distributions
of the interior plate are not suitable for the modeling of detailed
boundary layer effects.

2.2. General 3-D solution in the form of 2-D plate theories

In order to present the 3-D solution (2)–(4) in the form of a 2-D
plate theory, we define the transverse deflection and normal rota-
tions on the mid-surface as
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respectively. Furthermore, we find the following key relations:
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By using the mid-surface variables (6), the 3-D displacements
(2)–(4) can be written as
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The above expressions describe the kinematics of a Full Interior
plate and are valid for any biharmonic Wðx; yÞ. If we neglect the
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