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ABSTRACT

This is a study of viscoelastoplastic (VEP) vibrations and their use for the analysis of low cycle fatigue in
internally damped inelastic frame structures (IDIFSs). The background of this inelastic theory is presented
in the framework of a mathematical-physical analogy between the rheological model and a dynamical
model with viscous damping. The rheological-dynamical analogy (RDA) is a type of inelastic analysis,
which transforms one category of material non-linear problems to simpler linear dynamical problems
using modal analysis. The aim of this paper is to define internal damping based on both the dynamic
modulus and modal damping ratios. The idea underlying these approaches is that fatigue damage appears
if internal damping is unevenly distributed over the elements of a structure. The residual force method,
which requires the use of the finite element method (FEM), is used for the location of damage and deriva-
tion of the fatigue damage vector. Finally, the effective force vector is derived from damage mechanics. An
analysis of damaged IDIFSs made of reinforced concrete is carried out. It is shown that the RDA, which
correlates with the main mechanical properties of the material measured, can improve the prediction
of fatigue damage caused by low cycle fatigue.
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1. Introduction

In practice, engineering structures are usually complex, and
their dynamic analysis is traditionally performed using the con-
ventional FEM. Dynamic analysis in structural engineering falls
into two different classes, one involving low frequency loading,
and the other high frequency loading. Low frequency problems
are categorized as structural dynamics problems, where the fre-
quency content of the dynamic load is of the order of a few hun-
dred hertz and the designer will be mostly interested in its long-
term (or steady-state) effects on the structure. This paper is con-
cerned with a new proposal regarding the analysis of low cycle
fatigue in IDIFSs.

Finite element solutions in dynamics are obtained by employing
two different methods [1,2]; the modal method and time marching
schemes. In modal analysis responses of individual modes are
superimposed to determine the total response. Traditionally,
energy dissipation in a structure is represented as an idealized vis-
cous damping force, i.e. a force directly proportional to the velocity
of the corresponding dynamic system. In this case, the structure
mass and stiffness matrices remain constant during the analysis
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and satisfy the well-known orthogonality conditions. If the damp-
ing matrix also satisfies the criterion of orthogonality, the equa-
tions of motion for a discretized multi-degree-of-freedom
(MDOF) structure can be decoupled into i independent equations,
one for each normal mode of the structure. This is equivalent to
assuming that the normal modes of a damped system are identical
to those of an undamped system. It is well known that the damping
matrix is not diagonal for all real structures; nevertheless, in order
to uncouple the modal equations, it is necessary to assume that
there is no coupling between the modes. Therefore, it is assumed
that the damping matrix is diagonal, with the VEP modal damping
terms ¢; = 2¢&m;w;. Ratio & is defined as the ratio of damping in
mode i to the critical damping in mode i. In most cases modal
damping ratios ¢&; are used in computer modeling to approximate
unknown energy dissipation within a structure.

Nowadays, there is a growing interest in developing a theory
which would enable the prediction of fatigue damage in structures.
Cumulative fatigue damage analysis plays a key role in the life pre-
diction for components and structures with field load histories [3].
However, investigation in this paper shows that internal damping
that is unevenly distributed over the elements of an IDIFS causes
deterioration of the material named fatigue damage. This analysis
is based on the RDA. The RDA inelastic theory has been developed
to describe the dynamic response of structures using both the
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dynamic modulus and modal damping ratios [4,5]. The dynamic
modulus is obtained based on a concept of a complex modulus of
VEP materials, whereas the modal damping ratios are obtained
by observing critically damped dynamic systems in the steady-
state response. It has been proved that the dynamic modulus is
equal to the tangent modulus at selected moments in time in some
plastic materials [6]. Also, internal damping is a significant factor,
considered as a damage variable in low cycle fatigue. The eigenval-
ues of a structure must first be solved for the dynamic system
relieved of external masses, which is required to critically damp
it [4]. This is necessary in order to calculate the modal damping
ratios for systems composed of consistent or lumped external
masses. A system composed of external masses has its own eigen-
values. Also, the RDA is an analytical method whereby resonant
frequencies may simply be calculated using zero modal damping
ratios.

The structural damage detection method, which uses the modal
parameters of dynamic systems, has been in use for a long time
under two approaches: the first approach relates variation in the
strain energy of a structure to changes in its structural frequencies
[7], and the second approach relates changes in the stiffness and
mass properties of a structure to changes in its structural frequen-
cies and mode shapes. The second approach, named the residual
force method [8], is the more versatile method. In this paper, a
new methodology is presented in the framework of the residual
force method using the RDA. The proposed algorithm combines
the RDA and continuum damage mechanics to derive the fatigue
damage vector of structures, as well as the effective force vector.
Damage is observed on the macro scale. It is assumed at this scale
that materials consist of continuously distributed material points,
and that material density as well as other relevant physical prop-
erties of materials can be determined. When cyclic load is applied
to a material, micro cavities may be induced as a result of irre-
versible plastic deformation. These cavities may grow to form
cracks and give rise to the final failure of the material. The deteri-
oration of the material in this process is called fatigue damage [9].
The damage caused by low cycle fatigue was verified in a typical
IDIFS made of reinforced concrete using three damaged structures.
The aim was to demonstrate the validity and applicability of the
RDA inelastic theory. Numerical examples are provided to show
theoretical considerations, confirming that the RDA improves the
prediction of fatigue damage in IDIFSs.

2. Rheological-dynamical analysis of vibrations
2.1. RDA - a short overview

Material micro cracking is accompanied by the loading of a
specimen, leading to its damage and failure. Consider the case of
the VEP strain of a rod presented in Fig. 1a). In material investiga-
tions, both stress o(t) and inelastic strain &*(t) = &,¢(t) + &,p(t) are
functions of time. If the total VEP strain &(t) = ¢ + &*(t) is presented
as a sum of elastic (instantaneous), viscoelastic (VE) and viscoplas-
tic (VP) components, each isochronous stress-strain diagram of a
thin long symmetrical rod (e.g., with a square or circular cross sec-
tion Ap) can accurately be approximated by the VEP rheological
model H-K-(StV|N), consisting of five elements. The rheological
model is shown in Fig. 1b) using the following symbols: N for
the Newtonian dashpot, StV for Saint-Venant’s body, H for the Hoo-
kean spring, “|” for a parallel connection and “—" for a connection
in a series.

Since the Hookean spring, Kelvin’s body (K = H|N) and VP body
(StVIN) are connected in a series, stresses ¢(t) in all the models are
equal. Based on the VEP rheological model, MilaSinovi¢ [10]
derived a governing differential equation,
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where Ey is the elastic modulus, oy the uniaxial yield stress and Y =
oy+ H'e,(t) the VEP yield condition. The four properties at fixed
step times are: extensional VE viscosity g, extensional VP viscosity
Jn, VE modulus Ex and VP modulus H'. However, these constants
cannot easily be determined in physical experiments, especially
Trouton’s viscosities /x and /n. The corresponding homogeneous
equation of the total VEP strain is as follows,

&(t)Akin + &(t) (Exin + H'ix) + e(t)ExH' = 0. )

On the other hand, a mechanical longitudinal disturbance (strain)
propagates in an elastic medium at the finite initial phase velocity
o = (Eu/p)''?, where p is the density of the medium. The vibration
at an arbitrary point M of the rod lags in the phase behind that at
the source of the wave. If Iy is the initial distance between the
two ends of the rod, the time required for a wave to travel from
one to the other end of it is t-t; = TP=Iy/ 7. The natural angular fre-
quency w of the discrete dynamical model, which represents the
undamped free longitudinal vibration of a rod, is given by

Ik
w=1—=
m

Here, m is the mass of the rod and k its axial stiffness, as shown in
Fig. 1c.

Bearing in mind Eq. (2), an expression similar to Eq. (3) can be
formulated, setting the rheological model of the rod into the state
of critical viscous damping (c = c),
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where 7 is the specific gravity. Thus,
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Consequently, the propagation of longitudinal elastic waves
forms the physical basis for the analogy between two different
physical phenomena, the rheological and the dynamical. Then,
Eq. (2) may be expressed as follows,

Cor = 2Vkm = 2kT". (6)

Etym+ é(t)co + e(t)k = 0. )

Therefore, a very complicated non-linear problem in the VEP
range of strains may be solved as a simple linear dynamic one.
Although the RDA is derived in order to solve dynamic problems
[4,5], it can be used in the analysis of quasi-static loading (6 — 0)
considering the corresponding limit values of derived analytical
expressions. Hence, each quasi-static stress-strain curve of a spec-
imen (rod, column, beam, etc.) can be obtained using the RDA
modulus function [6].
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