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In this paper, the stochastic boundary element method of piezoelectric problems with randomness of material 

parameters and randomness of applied loads is proposed. By using the method of first-order Taylor expansion, 

each random quantity is written into the sum of the mean and deviation. The boundary integral equations cor- 

responding to the means and deviations of the displacements and electric potential are derived, respectively. 

It is demonstrated that the randomness of material parameters can be transformed into the equivalent random 

body forces and equivalent random charge density, so that the fundamental solutions of deterministic piezo- 

electric problems can be used in boundary integral equations of the means or deviations due to the similarity 

between the governing equations with randomness and those of deterministic piezoelectric problems. Finally, 

several numerical examples are performed to verify the validity of the proposed stochastic boundary element 

method. 

1. Introduction 

The piezoelectric components have been widely used in engineering 

because of its unique positive and inverse piezoelectric effect. However, 

in practical engineering, it is always unavoidable to introduce some un- 

certainties in the material properties and the applied loads during the 

manufacturing and loading processes. In some cases such uncertainties 

may be significant and should not be ignored. These uncertainties are 

usually spatially distributed and correlated over the whole structures 

and should be modeled as random fields. In this case, the relationship 

between deformation and external load should be described by stochas- 

tic partial differential equations with random coefficients. Therefore, 

in order to analyze the strength and reliability of piezoelectric com- 

ponents with such uncertainties more effectively, stochastic finite ele- 

ment method (SFEM) and stochastic boundary element method (SBEM) 

were developed to analyze such structures combined with methods of 

probability statistics. Vehoosol and Gutierrez [1] indicated that with 

the size decrease of micro electromechanical systems (MEMS) made of 

piezoelectric ceramics, controllability of production processes becomes 

increasingly difficult, and then the structural properties of MEMS are 

subject to the large uncertainties. By means of the SFEM, it is demon- 

strated that these uncertainties can have a significant influence on both 

the performance and reliability of the piezoelectric components. Srivas- 

tava et al. [2] studied the influence of randomness of material properties 

on the performance of piezoelectric fan by using the Monte Carlo Sim- 
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ulation. The effect of these uncertainties must be taken into account 

in the design and modification process of the piezoelectric fan. The re- 

sults of this study will enhance confidence in the design process and will 

eventually pave the way for improved micro-electronic cooling systems. 

As compared with SFEM, SBEM has emerged as a powerful tool for 

structural analysis with the uncertainties due to its unique advantages, 

for example, the discretization of the boundary that leads to less com- 

puting work and the use of fundamental solutions for the infinite media 

that leads to a higher accuracy. And it is more efficient for the fracture 

and fatigue problems for piezoelectric ceramics due to their intrinsic 

brittleness [3] . 

The earliest research work on SBEM, to the best of authors’ knowl- 

edge, was started by Burczytiski [4] , and he solved the stochastic 

boundary value problems of elasticity. Later, the SBEM was extended 

to different fields. For potential problems, Nakagiri et al. [5] used per- 

turbation technique to derive SBEM, taking account of only the random 

boundary shape. Kaljevic and Saigal [6] studied two-dimensional steady 

state potential flow, taking account of random geometric configuration 

and random material parameter. For heat conduction problems, Drew- 

niak [7] studied heat conduction problems with random conductivity 

and random heat transfer coefficient. For elastic problems, Ren et al. 

[8] presented the SBEM for static problems by using the first-order 

Taylor expansion method. Burczynski and Skrzypczyk [9] proposed the 

SBEM to static and dynamic problems with random mixed boundary 

conditions, random material parameters and stochastic geometry 
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boundary including external and internal boundaries. Wang et al. 

[10 , 11] extended the SBEM to the sufficient and necessary boundary 

element method for both potential problem and plane problem of elas- 

ticity. Kaminski [12] extended the SBEM to composite materials with 

stochastic interface defects. There were also a lot of works focusing on 

groundwater flow problems [13–16] . In recent years, Su and coworkers 

[17 , 18] presented stochastic spline fictitious boundary element method 

and analyzed the reliability of plane elasticity problem and plate 

bending problem. They also discussed the random vibration of plane 

elastic problems with both structural and loading uncertainties [19] . 

So far, there has been no report on applying SBEM to the piezoelectric 

problem. 

The main purpose of this paper is to propose the stochastic bound- 

ary element method to analyze piezoelectric components with random 

material parameters and random applied loads. The boundary integral 

equations corresponding to the means and deviations of the displace- 

ments and electric potential are derived. Furthermore, the covariance 

matrices of the unknown boundary displacements and electric poten- 

tials as well as surface tractions and surface charges can be obtained. 

Finally several numerical examples of piezoelectric plane problems are 

presented to verify the efficiency of the proposed SBEM. 

2. Basic equations of piezoelectricity and BEM formulations 

The governing equations for piezoelectricity can be summarized as 

follows: 

𝜎𝑖𝑗,𝑗 + 𝑓 𝑖 = 0 
𝐷 𝑖,𝑖 − 𝑞 = 0 

} 

, (1) 

where 𝜎ij are the components of elastic stress, D i are the three electric 

displacement components; f i are the three components of body force per 

unit volume and q is the charge density. 

The constitutive relations between the stresses and electric displace- 

ments with the displacements and electric potential for the piezoelec- 

tricity are [20] : 

𝜎ij = 𝐶 ijkl 𝑢 𝑘,𝑙 + 𝑒 kij 𝜙,𝑘 
(2) 

𝐷 𝑖 = 𝑒 ikl 𝑢 𝑘,𝑙 − 𝜀 ik 𝜙,𝑘 , 

where u i are the three elastic displacement components and 𝜙 is the elec- 

tric potential; c ijkl , e ijk and 𝜀 ij are the elastic, piezoelectric and dielectric 

material constants, respectively. Moreover, partial differentiation with 

respect to a space variable is denoted with a comma. 

The boundary conditions are given by 

𝜎𝑖𝑗 𝑛 𝑗 = ̃𝑡 𝑖 𝑜𝑛 Γ𝑡 
𝑢 𝑖 = �̃� 𝑖 𝑜𝑛 Γ𝑢 

} 

𝐷 𝑖 𝑛 𝑖 = − ̃𝜔 𝑜𝑛 Γ𝜔 
𝜙 = �̃� 𝑜𝑛 Γ𝜙

} 

, (3) 

where t i are the components of the surface traction, 𝜔 is the surface 

charge, n i is the unit outward normal vector, and “∼” indicates the pre- 

scribed value. Note that Γt + Γu = Γ𝜔 + Γ𝜙 = Γ. 

If material parameters can be modeled as the functions of the spatial 

coordinates, the above equations can result in equilibrium equations in 

terms of the displacements and electric potential for the transversely 

isotropic piezoelectricity (the x-y plane is isotropic plane, and the z - 

axis is the polarization direction of piezoelectric materials) in the matrix 

form as follows: 

[ 𝑫 ] 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑢 1 
𝑢 2 
𝑢 3 
𝜙

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
+ 

[
𝑫 1 

]⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑢 1 
𝑢 2 
𝑢 3 
𝜙

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑓 1 
𝑓 2 
𝑓 3 
− 𝑞 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 0 , (4) 

where [ D ] and [ D 1 ] are the differential operator matrices given by: 

[ 𝑫 ] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑐 11 
𝜕 2 

𝜕 𝑥 2 
+ 𝑐 66 

𝜕 2 

𝜕 𝑦 2 
+ 𝑐 44 

𝜕 2 

𝜕 𝑧 2 
, 
(
𝑐 12 + 𝑐 66 

) 𝜕 2 
𝜕 𝑥𝜕 𝑦 

, 
(
𝑐 13 + 𝑐 44 

) 𝜕 2 
𝜕 𝑥𝜕 𝑧 

, 
(
𝑒 15 + 𝑒 31 

) 𝜕 2 
𝜕 𝑥𝜕 𝑧 (

𝑐 12 + 𝑐 66 
) 𝜕 2 
𝜕 𝑥𝜕 𝑦 

, 𝑐 66 
𝜕 2 

𝜕 𝑥 2 
+ 𝑐 11 

𝜕 2 

𝜕 𝑦 2 
+ 𝑐 44 

𝜕 2 

𝜕 𝑧 2 
, 
(
𝑐 13 + 𝑐 44 

) 𝜕 2 
𝜕 𝑦𝜕 𝑧 

, 
(
𝑒 15 + 𝑒 31 

) 𝜕 2 
𝜕 𝑦𝜕 𝑧 (

𝑐 13 + 𝑐 44 
) 𝜕 2 
𝜕 𝑥𝜕 𝑧 

, 
(
𝑐 13 + 𝑐 44 

) 𝜕 2 
𝜕 𝑦𝜕 𝑧 

, 𝑐 44 

( 

𝜕 2 

𝜕 𝑥 2 
+ 

𝜕 2 

𝜕 𝑦 2 

) 

+ 𝑐 33 
𝜕 2 

𝜕 𝑧 2 
, 𝑒 15 

( 

𝜕 2 

𝜕 𝑥 2 
+ 

𝜕 2 

𝜕 𝑦 2 

) 

+ 𝑒 33 
𝜕 2 

𝜕 𝑧 2 (
𝑒 15 + 𝑒 31 

) 𝜕 2 
𝜕 𝑥𝜕 𝑧 

, 
(
𝑒 15 + 𝑒 31 

) 𝜕 2 
𝜕 𝑦𝜕 𝑧 

, 𝑒 15 

( 

𝜕 2 

𝜕 𝑥 2 
+ 

𝜕 2 

𝜕 𝑦 2 

) 

+ 𝑒 33 
𝜕 2 

𝜕 𝑧 2 
, −[ 𝜀 11 

( 

𝜕 2 

𝜕 𝑥 2 
+ 

𝜕 2 

𝜕 𝑦 2 

) 

+ 𝜀 33 
𝜕 2 

𝜕 𝑧 2 
] 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (5) 

and 

[
𝑫 1 

]
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑐 11 , 𝑥 
𝜕 

𝜕𝑥 
+ 𝑐 66 , 𝑦 

𝜕 

𝜕𝑦 
+ 𝑐 44 , 𝑧 

𝜕 

𝜕𝑧 
, 𝑐 66 , 𝑦 

𝜕 

𝜕𝑥 
+ 𝑐 12 , 𝑥 

𝜕 

𝜕𝑦 
, 𝑐 44 , 𝑧 

𝜕 

𝜕𝑥 
+ 𝑐 13 , 𝑥 

𝜕 

𝜕𝑧 
, 𝑒 15 , 𝑧 

𝜕 

𝜕𝑥 
+ 𝑒 31 , 𝑥 

𝜕 

𝜕𝑧 

𝑐 12 , 𝑦 
𝜕 

𝜕𝑥 
+ 𝑐 66 , 𝑥 

𝜕 

𝜕𝑦 
, 𝑐 66 , 𝑥 

𝜕 

𝜕𝑥 
+ 𝑐 11 , 𝑦 

𝜕 

𝜕𝑦 
+ 𝑐 44 , 𝑧 

𝜕 

𝜕𝑧 
, 𝑐 44 , 𝑧 

𝜕 

𝜕𝑦 
+ 𝑐 13 , 𝑦 

𝜕 

𝜕𝑧 
, 𝑒 15 , 𝑧 

𝜕 

𝜕𝑦 
+ 𝑒 31 , 𝑦 

𝜕 

𝜕𝑧 

𝑐 13 , 𝑧 
𝜕 

𝜕𝑥 
+ 𝑐 44 , 𝑥 

𝜕 

𝜕𝑧 
, 𝑐 13 , 𝑧 

𝜕 

𝜕𝑦 
+ 𝑐 44 , 𝑦 

𝜕 

𝜕𝑧 
, 𝑐 44 , 𝑥 

𝜕 

𝜕𝑥 
+ 𝑐 44 , 𝑦 

𝜕 

𝜕𝑦 
+ 𝑐 33 , 𝑧 

𝜕 

𝜕𝑧 
, 𝑒 15 , 𝑥 

𝜕 

𝜕𝑥 
+ 𝑒 15 , 𝑦 

𝜕 

𝜕𝑦 
+ 𝑒 33 , 𝑧 

𝜕 

𝜕𝑧 

𝑒 31 , 𝑧 
𝜕 

𝜕𝑥 
+ 𝑒 15 , 𝑥 

𝜕 

𝜕𝑧 
, 𝑒 31 , 𝑧 

𝜕 

𝜕𝑦 
+ 𝑒 15 , 𝑦 

𝜕 

𝜕𝑧 
, 𝑒 15 , 𝑥 

𝜕 

𝜕𝑥 
+ 𝑒 15 , 𝑦 

𝜕 

𝜕𝑦 
+ 𝑒 33 , 𝑧 

𝜕 

𝜕𝑧 
, − 

( 

𝜀 11 , 𝑥 
𝜕 

𝜕𝑥 
+ 𝜀 11 , 𝑦 

𝜕 

𝜕𝑦 
+ 𝜀 33 , 𝑧 

𝜕 

𝜕𝑧 

) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (6) 

If the material parameters are deterministic constants, then 

Eq. (4) can be simplified to 

[ 𝑫 ] 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑢 1 
𝑢 2 
𝑢 3 
𝜙

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑓 1 
𝑓 2 
𝑓 3 
− 𝑞 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 0 . (7) 

The boundary integral equations for the above problem have been 

obtained in Ref. [21] , which takes the following form if we use the ex- 

tended notations u J , t J and f J [22] representing the generalized displace- 

ments, surface tractions and body forces, respectively 

𝑐 𝐼𝐽 ( 𝜉) 𝑢 𝐽 ( 𝜉) + ∫Γ 𝑡 
∗ 
𝐼𝐽 
( 𝜉, 𝑥 ) 𝑢 𝐽 ( 𝑥 ) 𝑑Γ( 𝑥 ) 

= ∫Γ 𝑢 
∗ 
𝐼𝐽 
( 𝜉, 𝑥 ) 𝑡 𝐽 ( 𝑥 ) 𝑑Γ( 𝑥 ) + ∫Ω 𝑢 

∗ 
𝐼𝐽 
( 𝜉, 𝑥 ) 𝑓 𝐽 ( 𝑥 ) 𝑑Ω( 𝑥 ) 

( 𝐼, 𝐽 = 1 , 2 , 3 , 4) , (8) 

where { 

𝑢 𝐽 = 𝑢 𝑗 , ( 𝐽 = 𝑗 = 1 , 2 , 3) 
𝑢 𝐽 = − 𝜙, ( 𝐽 = 4) , 

{ 

𝑡 𝐽 = 𝑡 𝑗 , ( 𝐽 = 𝑗 = 1 , 2 , 3) 
𝑡 𝐽 = − 𝜔, ( 𝐽 = 4) , { 

𝑓 𝐽 = 𝑓 𝑗 , ( 𝐽 = 𝑗 = 1 , 2 , 3) 
𝑓 𝐽 = − 𝑞, ( 𝐽 = 4) 

𝑢 ∗ 
𝐼𝐽 

= 

{ 

𝑢 ∗ 
𝐼𝑗 
, ( 𝐼 = 1 , 2 , 3 , 4 𝐽 = 𝑗 = 1 , 2 , 3) 

𝜙∗ 
𝐼 
, ( 𝐼 = 1 , 2 , 3 , 4 𝐽 = 4) 

, 

249 



Download English Version:

https://daneshyari.com/en/article/6924903

Download Persian Version:

https://daneshyari.com/article/6924903

Daneshyari.com

https://daneshyari.com/en/article/6924903
https://daneshyari.com/article/6924903
https://daneshyari.com

