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a b s t r a c t 

The Boundary Element Method, a numerical technique that is not based on domain discretization, faces difficulties 

to model piecewise homogeneous problems that do not appear in many other applications. Thus, in this paper 

it is presented an alternative methodology for solution of this kind of problem, previously tested successfully 

for the Laplace Equation, applied here to static cases of linear elasticity. It is substantially different from the 

classic sub-region technique, since it is based on the sum of elastic energy retained in each distinct sector. Several 

examples that include cases with irregular domains are simulated showing the robustness and adequacy of the 

proposed technique. In the absence of analytical solutions, Finite Element Method solutions are used as reference 

for error evaluation. 

1. Introduction 

One can say that a most unsuitable application for the Bound- 

ary Element Method (BEM) concerns the modeling of problems with 

non-homogeneous domains, very common case in soil mechanics, geo- 

physics, etc. Usually domain discretization methods are preferred to 

model this important class of problems, e.g., the Finite Element Method 

[1,2] the Finite Difference Method [3] , etc. 

The “sub-region ” technique is still the most well known BEM tech- 

nique to deal with sector located heterogeneity, [4] . As the procedure is 

based on domain partition, a simple concept, significant changes have 

not been observed for this technique along the time [5,6] . This does 

not mean that the procedure is immune to criticism; in certain complex 

situations the insertion of many internal boundaries produces harmful 

effects, such as loss of accuracy, increase in computational cost and more 

elaborate programming. 

Concerning fracture mechanics, where BEM is more efficient than 

other traditional discrete methods, similar restrictions may occur. If 

layered-materials are involved, the sub-region technique must be intro- 

duced and the order of the final system matrix can be increased signif- 
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icantly. Thus, to preserve the advantages of BEM when there is a large 

number of elements some strategies have been proposed to reduce the 

size of the final matrix [7] . Anyway, the creation of additional inter- 

nal boundaries and consequent loss of numerical precision due to the 

approximation persists. 

This work presents the extension of a technique that showed encour- 

aging results solving scalar potential problems [8] . Its idea is substan- 

tially different from the classic sub-region technique, since energy prin- 

ciples support the proposed procedure, which hereinafter is named Do- 

main Superposition Technique (DST). 

Physically, using the DST the original problem as a whole is modeled 

by a superposition of a homogeneous background domain and other 

sub-domains with distinct properties. Elastic energy in each sector is 

computed suitably generating a consistent mathematical model given 

in a usual form of BEM integrals. Mathematically, the DST links all 

sub-domains through influence coefficients, which are given by integra- 

tions carried out on the surrounding boundary and all sectors bound- 

aries, with the source points located at all nodal points, either inter- 

nal or on the boundaries. The final DST H matrix is full, but its or- 

der is lower than the order of standard sub-region H matrix, since 
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the tractions on internal boundaries do not appear in the final DST 

system. 

It must be highlighted that the same DST idea concerning the en- 

ergy contribution of each homogeneous sector exists in problems with 

body forces. Loeffler and Mansur [9] used this approach to account for 

sectorial loads with the Dual Reciprocity technique [10] . 

It should be emphasized that the approaches concerning piecewise 

homogeneous domains, for both scalar and vectorial problems, were 

studied before using the mathematical formalism of the Potential Theory 

[11–13] . Nevertheless, comprehensive numerical simulations were not 

presented in these works. 

The matrices assembly technique of the DST procedure is similar to 

that found in solution of soil-structures interaction problems when FEM 

and BEM are employed together [14] , as well as to cases of integration 

between zoned plate bending [15,16] in which common nodal points of 

different systems are assembled in a global matrix. The numerous anal- 

ysis carried out by Venturini and others [17,18] concerning plate-beam- 

column integrated systems have induced him to propose models which 

employed schemes close to the DST procedure [19] , however, based ex- 

clusively on algebraic manipulations of sub-regions integral equations. 

Later on, in another work Venturini improved his method [20] , still 

small differences related to the DST remained, although the matrix ex- 

pressions and the numerical results are very similar. Recently Wagdy 

and Rashed [21] also proposed a formulation where an additional stiff- 

ness matrix is assembled for boundary integral equations in which dif- 

ferent sub-domains are connected using internal points. 

It must be highlighted that there are meaningful theoretical differ- 

ences concerning the aforementioned methods and the DST technique: 

all mentioned works do not employ the concept of energy superposition 

to connect suitably different sub-domains where a surrounding homo- 

geneous domain is taken as background. Just the idea of linkage of dis- 

tinct domains using internal points is employed in the aforementioned 

papers. 

The good performance achieved in Laplace problems accredits the 

DST for other more elaborate applications without great difficulties of 

implementation, such as elasticity problems, the goal of the present 

study. The extension of DST to this kind of problem opens an oppor- 

tunity to examine other interesting applications such as plasticity and 

fracture mechanics. Despite being a new application, the central idea 

does not change and its computational advantages remain: the proposed 

technique is still much easier to implement computationally than the 

sub-region technique, since all new influence coefficients related to the 

sectors can be added directly to the classic H BEM matrix. 

2. The technique of domain superposition 

Considering a two-dimensional medium as being continuous, ho- 

mogeneous, elastic, linear, isotropic, in static conditions, without body 

forces, the governing differential equation associated to this problem is 

the Navier’s Equation [22] . This equation using indicial notation and 

the constants of Lamé 𝜆 and 𝜇 [23] is given by: 

𝜇 𝑢 𝑗 , 𝑖𝑖 ( 𝐗 ) + ( 𝜆 + 𝜇) 𝑢 𝑖 , 𝑖𝑗 ( 𝐗 ) = 0 (1) 

In Eq. (1) , u i ( X ) represents the vector component of the displacement 

field in “i ” direction and X represents a point with coordinates ( x 1 , x 2 ). 

Possible body forces are not considered here. 

Suitable mathematical operations are applied, beginning with the 

integral formulation of the governing equation using the Kelvin funda- 

mental solution u j 
∗ ( 𝜉; X ) [4] as auxiliary function. Thus, the following 

integral equation may be written on a homogeneous domain Ω( X ) 

𝜇 ∫Ω 𝑢 𝑗 ( 𝐗 ) , 𝑖𝑖 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑Ω ( 𝐗 ) + ( 𝜆 + 𝜇) ∫Ω 𝑢 𝑖 ( 𝐗 ) , 𝑖𝑗 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑Ω( 𝐗 ) = 0 (2) 

In order to present the features of the DST, a domain consisting of 

two regions with distinct physical properties is considered, as shown in 

Fig. 1 , in which the complete domain Ω( X ) is composed of the sum of 

Fig. 1. Complete and sectorial domains with homogeneous properties. 

Ωe and Ωi ; both 𝜆e , 𝜆i , 𝜇e and 𝜇i are physical properties, constant inside 

each sub-domain. In this formulation, unlike what is done in the tra- 

ditional sub-regions approach, a complete or surrounding domain with 

homogeneous properties is elected and the other sub-domains are cor- 

related with it. 

The constitutive properties are constant inside each sub-domain. 

Thus, considering that the kernel of the integrals is comprised by inte- 

grable functions, the following integral equation can be exposed based 

on the domain division concept described above: 

𝜇𝑒 ∫Ω𝑒 

𝑢 𝑒 𝑗 ( 𝐗 ) , 𝑖𝑖 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑒 ( 𝐗 ) + ( 𝜆𝑒 + 𝜇𝑒 ) ∫Ω𝑒 

𝑢 𝑒 𝑖 ( 𝐗 ) , 𝑖𝑗 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑒 ( 𝐗 ) 

+ 𝜇𝑖 ∫Ω𝑖 

𝑢 𝑖 𝑗 ( 𝐗 ) , 𝑖𝑖 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑖 ( 𝐗 ) + ( 𝜆𝑖 + 𝜇𝑖 ) ∫Ω𝑖 

𝑢 𝑖 𝑖 ( 𝐗 ) , 𝑖𝑗 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑖 ( 𝐗 ) = 0 

(3) 

Performing some simple mathematical operations considering 

that 𝜆i = 𝜆e + 𝜆∗ and 𝜇i = 𝜇e + 𝜇∗ , the following integral equation is 

achieved: 

𝜇𝑒 ∫Ω 𝑢 𝑒 𝑗 ( 𝐗 ) , 𝑖𝑖 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑒 ( 𝐗 ) + ( 𝜆𝑒 + 𝜇𝑒 ) ∫Ω 𝑢 𝑒 𝑖 ( 𝐗 ) , 𝑖𝑗 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑒 ( 𝐗 ) 

+ 𝜇∗ ∫Ω𝑖 

𝑢 𝑖 𝑗 ( 𝐗 ) , 𝑖𝑖 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑖 ( 𝐗 ) + ( 𝜆∗ + 𝜇∗ ) ∫Ω𝑖 

𝑢 𝑖 𝑖 ( 𝐗 ) , 𝑖𝑗 𝑢 ∗ 𝑗 ( 𝜉; 𝐗 ) 𝑑 Ω𝑖 ( 𝐗 ) = 0 

(4) 

Eq. (4) synthesizes the DST aim: the problem as a whole can be an- 

alyzed as a superposition of a contribution related to a background ho- 

mogeneous domain and other sectors that are also homogeneous. Due 

to the BEM features, this contribution is given in terms of balance of 

elastic energy. 

3. Boundary integral equations 

Eq. (4) can be rewritten in terms of the following boundary integrals, 

after application of the Divergence Theorem [4,24] : 

𝜇𝑒 

[ 
− 𝑃 𝑗 𝑢 𝑗 ( 𝜉) + ∫Γ 𝑝 𝑗 ( 𝐗 ) 𝑢 ∗ 

𝑗 
( 𝜉; 𝑋) 𝑑Γ( 𝐗 ) − ∫Γ 𝑝 

∗ 
𝑗 
( 𝜉; 𝐗 ) 𝑢 𝑗 ( 𝐗 ) 𝑑Γ( 𝐗 ) 

] 

+ 𝜇∗ 
[ 
− 𝑃 𝑗 𝑢 

𝑖 
𝑗 
( 𝜉) + ∫Γ𝑖 𝑝 

𝑖 
𝑗 
( 𝐗 ) 𝑢 ∗ 

𝑗 
( 𝜉; 𝐗 ) 𝑑 Γ𝑖 ( 𝐗 ) − ∫Γ𝑖 𝑝 

∗ 
𝑗 
( 𝜉; 𝐗 ) 𝑢 𝑖 

𝑗 
( 𝐗 ) 𝑑 Γ𝑖 ( 𝐗 ) 

] 
= 0 

(5) 

For convenience, a dyadic structure is adopted for the fundamental 

solution and its associated traction derivative, denoted respectively u ij 
∗ 

and p ij 
∗ ,to represent displacements and tractions generated in the direc- 

tion j at field point X , as results of a unit load acting in the direction i 

applied at source point 𝜉. When a dyadic coefficient C ij is introduced as a 

function of the position of the source point (if it lies within the domain, 

outside it or exactly on the boundary), the complete inverse boundary 

integral equation takes the following form: 
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