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a b s t r a c t 

In the present work, a hybrid transform-based localized meshless method is constructed for the solution of frac- 

tional diffusion-wave equations. The time stepping procedure is avoided to overcome the problem of time in- 

stability related to meshless methods. The issue of ill conditioning related to meshless differentiation matrices is 

resolved by incorporating small local system matrices. The time fractional diffusion-wave equation is selected to 

test the method. A clear improvement is observed in terms of stability, accuracy and ill-conditioning. 

© 2017 Elsevier Ltd. All rights reserved. 

Introduction 

Meshless methods have become increasingly popular over the last 
twenty years [4,6,8,19,25,32] . There are two approaches solving bound- 
ary value problems that based on the strong form and the weak form. 
The strong form seeks to collocate exactly the governing differential or 
integral equations and boundary conditions on a set of nodes inside the 
domain as well as on the boundary. For example, the Boundary Element 
Method (BEM) [6] requires integration and needs boundary elements. 
While the spectral methods possess spectral convergence, and needs no 
elements. But these methods require to collocate over a domain of regu- 
lar shape using a set of structured nodes. On the contrary the radial basis 
function (RBF) method [22,23] and the method of fundamental solution 
(MFS) [6] can use scattered (unstructured) nodes, and hence are truly 
meshless methods. These global collocation methods however have the 
tradeoffs of high matrix condition number, and that the approximate so- 
lution is continuous even if discontinuity is present in the true solution. 
These shortcomings can be overcome by using the localized meshless 
methods [32,36] . 

The second approach is based on the weak form, such as the varia- 
tional or weighted residual method. The weighted residual is integrated 
over the domain, and minimized. The finite element method (FEM) 
[4] subdivides the domain into elements and performs local minimiza- 
tion within each element. The localized scheme results in banded and 
well-conditioned matrix. However currently further research is needed 
to handle the issues of error convergence, stability of the matrix, compu- 
tational efficiency, simplicity of mathematical formulation and numer- 
ical implementation, adaptability to parallel processing, and the flex- 
ibility to solve challenging problems, such as moving boundary, frag- 
mentation, high-dimensional problems and problems with non-smooth 
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solutions. As no method can perform the best on all occasions, combined 
or hybrid methods may offer the best of both worlds. 

In the present work, we combined the Laplace transform 

[28,40,43] with localized RBF method [41,42] . We investigated its ap- 
plicability for solving time fractional diffusion-wave equations. An im- 
provement against other meshless methods using time stepping proce- 
dure for solving the same problem have been observed. The combination 
of Laplace transform with some other methods have been successfully 
achieved earlier and is available in the literature. Only small amount of 
work is available using the coupling of Laplace transform with other 
methods. For example in the work of [12] the authors coupled the 
Laplace transform with boundary-particle method for solving time frac- 
tional diffusion equation. In [30] the authors have combined the Laplace 
transform with Kansa method. Similarly the authors [13] studied the 
combination of Laplace transform with RBF method on unit sphere for 
solving Heat equation. The combination of Laplace transform with fi- 
nite element, finite difference method and spectral method can be found 
in the references [10,21,27,28,35,43] . Here it is attempted to combine 
the Laplace transform with localized meshless method and apply it to 
time fractional diffusion-wave equation. Recently, differential equations 
of fractional order have been widely used in many applications in sci- 
ence and engineering. Many phenomena in chemistry, fluid mechan- 
ics, finance, viscoelasticity, physics and other related fields can be suc- 
cessfully described using mathematical tools from fractional calculus 
[1–3,14–16,18,24,29,44] . 

1. Analysis of the method 

In this section we propose a hybrid meshless method for time frac- 
tional linear PDEs. In the proposed method we eliminate the time vari- 
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able by integral transformation and for the time independent PDE lo- 
calized meshless numerical scheme will be constructed. Our numerical 
scheme for approximating time fractional differential equation of order 
1 < 𝛼 < 2 of the form 

𝜕 𝛼
𝑡 
𝑢 ( 𝐱, 𝑡 ) +  𝑢 ( 𝐱, 𝑡 ) = 𝑓 ( 𝐱, 𝑡 ) , 𝐱 ∈ Ω ⊂ ℝ 

𝑑 , 𝑑 ≥ 1 . (1.0.1) 

with the initial conditions 

𝑢 ( 𝐱, 0) = 𝑢 0 ( 𝐱) , 𝑢 𝑡 ( 𝐱, 0) = 𝑢 1 ( 𝐱) , 𝐱 ∈ Ω, (1.0.2) 

and the boundary conditions 

 𝑢 ( 𝐱, 𝑡 ) = 𝑔 1 ( 𝑡 ) , 𝐱 ∈ 𝜕Ω, (1.0.3) 

where  is a linear spatial differential operator and  is boundary oper- 
ator and 𝜕 𝛼

𝑡 
is the Caputo fractional partial derivative of order 𝛼 defined 

by 

𝜕 𝛼
𝑡 
𝑢 ( 𝐱 , 𝑡 ) = 

1 
Γ(2 − 𝛼) ∫

𝑡 

0 

𝜕 2 𝑢 ( 𝐱 , 𝑠 ) 
𝜕𝑠 2 

𝑑𝑠 

( 𝑡 − 𝑠 ) 𝛼−1 
, 𝛼 ∈ (1 , 2) . (1.0.4) 

Let the Laplace transform of v ( t ) be denoted by 

ℒ{ 𝑣 ( 𝑡 )} = 𝑉 ( 𝑧 ) = ∫
∞

0 
𝑒 − 𝑧𝑡 𝑣 ( 𝑡 ) 𝑑𝑡, (1.0.5) 

and the Laplace transform of the Caputo derivative is defined as 

ℒ{ 𝜕 𝛼
𝑡 
𝑣 ( 𝑡 )} = 𝑧 𝛼𝑉 ( 𝑧 ) − 

𝑝 −1 ∑
𝑖 =0 
𝑧 𝛼− 𝑖 −1 𝑣 ( 𝑖 ) (0) , 𝑝 − 1 < 𝛼 < 𝑝 ∈ ℤ 

+ , (1.0.6) 

then applying the Laplace transform to Eqs. (1.0.1) –(1.0.3) , we get [
𝑧 𝛼𝑈 ( 𝐱, 𝑧 ) − 𝑧 𝛼−1 𝑢 0 − 𝑧 𝛼−2 𝑢 1 

]
+  { 𝑈 ( 𝐱, 𝑧 )} = 𝐹 ( 𝐱, 𝑧 ) , 𝐱 ∈ Ω, (1.0.7) 

and 

 { 𝑈 ( 𝐱, 𝑧 )} = 𝐺 1 ( 𝑧 ) , 𝐱 ∈ 𝜕Ω, (1.0.8) 

respectively. Thus, we have the following system of linear differential 
equations [
𝑧 𝛼𝐼 +  

]
{ 𝑈 ( 𝐱, 𝑧 )} = 𝐺( 𝐱, 𝑧 ) , 𝐱 ∈ Ω. (1.0.9) 

 { 𝑈 ( 𝐱, 𝑧 )} = 𝐺 1 ( 𝑧 ) , 𝐱 ∈ 𝜕Ω, (1.0.10) 

where 

𝐺 ( 𝐱 , 𝑧 ) = 𝑧 𝛼−1 𝑢 0 + 𝑧 𝛼−2 𝑢 1 + 𝐹 ( 𝐱, 𝑧 ) , 

and then the solution u ( x , t ) of Problems (1.0.1) –(1.0.3) can be obtained 
by using inverse Laplace transform 

𝑢 ( 𝐱 , 𝑡 ) = 

1 
2 𝜋𝑖 ∫

𝜎+ 𝑖 ∞

𝜎− 𝑖 ∞
𝑒 𝑧𝑡 𝑈 ( 𝐱 , 𝑧 ) 𝑑𝑧 = 

1 
2 𝜋𝑖 ∫Γ 𝑒 

𝑧𝑡 𝑈 ( 𝐱 , 𝑧 ) 𝑑𝑧, 𝜎 > 𝜎0 , (1.0.11) 

where Γ is suitable path joining 𝜎 − 𝑖 ∞ to 𝜎 + 𝑖 ∞. The solution of Prob- 
lems (1.0.1) –(1.0.3) is mainly based on approximating the complex con- 
tour integral (1.0.11) along the chosen path either parabolic or hyper- 
bolic, etc. 

Numerical integration of the integral defined by the Eq. (1.0.11) is 
hard to compute because of the highly oscillatory exponential factor on 
the contour of integral and slowly decaying transform U ( x , z ), 𝑧 = 𝜎 + 𝜄𝑦, 

as | y | →∞. To circumvent the slow decay of the transform U ( x , z ) the 
strategy of Talbot [37] can be used. He suggested that the Bromwich line 
𝑧 = 𝜎 + 𝜄𝑦, −∞ < 𝑦 < ∞ can be transformed to a contour which starts 
and ends in left half plane, so that at each end Re ( 𝑧 ) → −∞, in such a 
case the integrand in (1.0.11) will decay rapidly because of the expo- 
nential factor. And this makes the integral defined by (1.0.11) suitable 
for approximation by trapezoidal or mid point rule [26] . By Cauchy’s 
theorem such a deformation is allowed if U ( x , z ) has no singularities, 
and | U ( x , z )| →0 if Re ( z ) ≤ 𝜎0 as | z | →∞. (If U ( x , z ) have singularities 
with unbounded imaginary part, then Talbot method may not work). In 
our approximation we used two types of contours namely the parabolic 
as well as hyperbolic, respectively. 

In the work of [43] the parabolic path is parameterized as 

𝑧 = 𝜇(1 + 𝜄𝑠 ) 2 . (1.0.12) 

For the strip 𝑠 = 𝛾 + 𝜄𝑐, where c > 0, −∞ < 𝛾 < ∞, the parabolic contour 
reduces to 

𝑧 ( 𝛾) = 𝜇
(
(1 − 𝑐) 2 − 𝛾2 

)
+ 2 𝜄𝜇𝛾(1 − 𝑐) . ( 𝐶 1 ) (1.0.13) 

Where 𝜇 is a parameter which controls width of the given contour. 
For best approximation we need to find optimal contour of integration. 
Weideman and Trefethen [43] have optimized the parabolic contour 
and obtained the optimal values of the parameters which guarantee to 
maintain small error in the time interval t 0 < t < T . For given t 0 , T, t and 
M , the optimal parameters are given by 

𝜇 = 

𝜋

4 
√
8Λ + 1 

𝑀 

𝑡 
, 𝑘 = 

√
8Λ + 1 
𝑀 

, Λ = 

𝑇 

𝑡 0 
, 

and the corresponding error estimate is of the order 

𝐸 1 = |𝑢 𝑘 ( 𝐱, 𝑡 ) − 𝑢 ( 𝐱, 𝑡 ) | = 𝑂 

⎛ ⎜ ⎜ ⎝ 𝑒 
− 
( 

2 𝜋√
8Λ+1 

) 
𝑀 

⎞ ⎟ ⎟ ⎠ . 𝑀 → ∞ (1.0.14) 

In our computations, M is defined by 𝑚 = 2 𝑀∕ 𝑘, where m is the number 
of quadrature points along the contour of integration and k denote the 
step size of the trapezoidal rule. 

The hyperbolic path is parameterized in form see for example [28] , 

𝑧 ( 𝛾) = 𝜔 + 𝜆( 1 − 𝑠𝑖𝑛 ( 𝛿 − 𝜄𝛾) ) , for − ∞ < 𝛾 < ∞, ( 𝐶 2 ) (1.0.15) 

with 𝜆> 0, 𝜔 ≥ 0, 0 < 𝛿 < 𝛽 − 

1 
2 𝜋, and 1 2 𝜋 < 𝛽 < 𝜋 (for detail see [28] ). 

The authors derived the optimal parameters for hyperbolic contour and 
its corresponding error estimate given by 

𝐸 2 = |𝑢 𝑘 ( 𝐱, 𝑡 ) − 𝑢 ( 𝐱, 𝑡 ) | = 𝑂 

(
𝑙( 𝜌𝑟 𝑀) 𝑒 − 𝜇𝑀 

)
, (1.0.16) 

where, 𝑙( 𝑥 ) = 𝑚𝑎𝑥 (1 , 𝑙𝑜𝑔(1∕ 𝑥 )) , r > 0, 𝜇 = (1 − 𝜃) 𝑟 ∕ 𝑏, 𝑟 = 2 𝜋𝑟, 0 < 𝜃 < 1, 
𝜌𝑟 = 𝜃𝑟 𝜏 sin ( 𝛿 − 𝑟 )∕ 𝑏, 𝑏 = 𝑐𝑜𝑠ℎ −1 (1∕( 𝜃𝜏 sin ( 𝛿))) , 𝜏 = 𝑡 0 ∕ 𝑇 , t 0 ≤ t ≤ T , 
0 < t 0 < T , 𝜆 = 𝜃𝑟 𝑀∕( 𝑏𝑇 ) . and 𝑘 = 𝑏 ∕ 𝑀. 

The numerical approximation of the integral representation 
(1.0.11) involves the following steps: 

• Select m points { 𝑧 1 , 𝑧 2 , … , 𝑧 𝑚 } along the path of integration (e.g 
parabolic or hyperbolic paths) and find the solution U ( x , z j ) of the 
Eqs. ((1.0.9) , (1.0.10)) . 

• The approximation of (1.0.11) in the complex plane can be obtained 
by trapezoidal rule with uniform step size k , and m quadrature points 
𝑧 𝑗 = 𝑧 ( 𝛾) , where 𝛾 = − 𝑀 ∶ 𝑘 ∶ 𝑀, and z ( 𝛾) can be obtained from 

(1.0.13) to (1.0.15) for parabolic and hyperbolic path, respectively. 

𝑢 𝑘 ( 𝐱 , 𝑡 ) = 

𝑘 

2 𝜋𝑖 

𝑀 ∑
𝑗=− 𝑀 

𝑒 𝑧 𝑗 𝑡 𝑈 ( 𝐱 , 𝑧 𝑗 ) ́𝑧 𝑗 . (1.0.17) 

2. Stability 

To discuss the stability of systems ((1.0.9) , (1.0.10)) , in discrete form 

this system can be represented as 

𝑊 𝐔 = 𝐛 , (2.0.1) 

where W is N ×N sparse differentiation matrix which can be obtained 
by localized kernel based method discussed in Section 3 . The stability 
constant corresponding to system (2.0.1) is given by 

𝐶 = sup 
𝑈≠0 

‖𝑈‖‖𝑊 𝑈‖ . (2.0.2) 

The value of C is finite using any type of discrete norms ‖. ‖ on ℝ 

𝑁 . The 
above equation can be expressed as 

‖𝑊 ‖−1 ≤ 

‖𝑈‖‖𝑊 𝑈‖ ≤ 𝐶, (2.0.3) 
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