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A B S T R A C T

A computationally efficient structural topology optimization framework is proposed for design of steel frame
structures with user-defined factors of safety against overall structure (global) and individual member instabili-
ties. The objective function is minimization of either compliance or the maximum of von Mises stresses within the
frame structure. Within optimization, overall structure buckling modes are found via an eigenvalue analysis, a
subset of “pseudo modes” are identified using a newly proposed methodology and are discarded to obtain a set of
real eigenvalues. Moreover, individual member buckling loads are estimated with Euler buckling analysis and are
aggregated into a single constraint. The minimum of each instability constraint is then estimated with separate
differentiable negative p-norm functions. Sensitivities of these newly developed constraints are explicitly derived
for application of gradient-based optimizers. The topology of four frame structures featuring moment-resisting
connections and member cross-sectional properties mapped from the American Institute of Steel Construction
design manual are optimized with the proposed algorithm to verify its effectiveness in optimizing structural
performance while maintaining factors of safety against overall and individual member instabilities. The inter-
action effects of preventing instabilities at different safety levels and the choice of objective function on the final
designs and their performances are investigated.

1. Introduction

Structural topology optimization (STO) is rapidly making inroads
as a design tool in structural engineering for identification of opti-
mized material distributions for trusses (pinned connections) and frame
structures (moment-resisting connections). This technique is more gen-
eral than other structural optimization approaches because it allows
for member sizes and topological features of the design (e.g., member
connectivity) to change simultaneously within the iterative design pro-
cess [1]. STO is often performed with the “ground structure” approach.
The ground structure is a dense mesh of candidate structural members,
which serves as the initial guess for the optimizer. At every optimization
iteration, a finite element analysis is performed to quantify the struc-
tural performance, i.e., determining the objective function and design
constraints. Moreover, a sizing optimization is performed to optimize
the objective function (gradient-based methods in this work) while the
constraints are satisfied. At the end of these optimization iterations,
members with low cross-sectional areas (below a prescribed threshold)
are removed from the design domain to obtain a cleaned-up version of
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the topology. Because this cleaning up results in a (small) loss of mate-
rial, another design iteration could be performed using this cleaned-up
structure as the initial guess, and this process is continued until conver-
gence is reached. Therefore, changes in the topology as well as member
sizes are achieved.

The ground structure approach is successfully implemented in min-
imum compliance topology STO under a prescribed volume of mate-
rial, where novel designs with very high stiffness are developed (see
e.g., [2,3] and the references therein). However, achieving realistic
designs requires many other practical structural performance aspects
to be directly incorporated within STO. Incorporation of these objec-
tives (or constraints) has generated significant research interest, but at
the same time has posed numerical and theoretical challenges. One area
of intense research is development of computationally efficient stress-
based topology optimization algorithms, which proved to be signifi-
cantly more challenging than compliance-based topology optimization
(e.g., the design singularity problem; see Refs. [4–11] and references
therein). Another area of active research is preventing structural insta-
bilities (or buckling) within the STO process, which is the focus of what
follows.
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The equilibrium of a structure (or any member) under compression
loads might be an unstable equilibrium. This means that at higher load
magnitudes any imposed perturbation on the structure (e.g., an admis-
sible deflection) may lead the structure to follow a different equilib-
rium path that is accompanied with large and sudden deformations
(buckling). Therefore, STO should recommend member sizes and con-
nectivity so that these buckling limit-states do not occur before other
strength or serviceability limits (e.g., yield stress in members). Early
STO algorithms were focused primarily on truss structures, and con-
trolled only for individual member buckling through limiting their
axial stresses to be under the member Euler buckling stress capacity
[12–14]. The stress singularity problems and formation of disjoint fea-
sible domains were primarily tackled with the 𝜖-relaxation method of
Refs. [7,15]. However, this approach of limiting the axial stress in every
member introduced a large number of constraints (as many as num-
ber of members), and quickly became computationally expensive and
even infeasible for enlarged ground structures. Therefore, only ground
structures with a small number of members were optimized in these
works.

Including measures only against individual member buckling in STO
does not guarantee the overall structure safety. For instance, a chain of
collinear members can still be formed, which is highly sensitive to over-
all structural buckling. Refs. [17] and [18] were the first authors to note
this, and suggested adding system-level stability constraints or geomet-
ric imperfections (as a measure for overall structural buckling) in topol-
ogy optimization. Including geometric imperfections for probabilistic
compliance-based design of trusses is discussed in Refs. [4,5,19,20],
and was further developed to include a direct methodology for over-
all structure buckling control in Ref. [21]. Overall structure buckling
capacity can also be determined with solving an eigenvalue problem
under linear elastic conditions. Currently, applications are restricted to
truss topology optimization, [22–27]. For each design (either the final
design or any intermediate one), the number of buckling modes (eigen-
vectors), and their corresponding load factors (eigenvalues) can be as
many as the number of degrees-of-freedom. Controlling the minimum
buckling load factor at every optimization iteration leads to a topology
that achieves a user-defined level of safety against the overall struc-
tural buckling limit state. Note that conducting a geometrically non-
linear analysis, where the equilibrium equation is written in residual
form and is solved iteratively using a variant of Newton-Raphson or
Riks (arc-length) method, might converge to an unstable equilibrium
branches where the tangent stiffness is negative. Refs. [28] suggest that
an eigenvalue type constraint is still needed to ensure a stable equilib-
rium regime is achieved for the final design using geometric nonlinear
analysis.

Implementation of an eigenvalue analysis within a gradient-based
STO poses the following two challenges: 1) identification of “pseudo
modes” of buckling and 2) determination of the minimum eigenvalue
with a differentiable function [29–31]. It is noted that unlike sizing opti-
mization, where member connectivity is fixed, topology optimization
allocates material freely to all candidate structure members. Therefore,
at each optimization iteration, there will be regions of the structure
with relatively low volume of material, and regions with a larger share
of the material. The buckling modes that mainly activate the degrees-of-
freedom in the low area regions of the design are termed pseudo modes
of buckling. Because the main contribution in the design performance
comes from members with relatively higher cross-sectional areas, these
pseudo-modes should be identified and eliminated before determining
the minimum load factor. Methodologies to eliminate the pseudo modes
is proposed in Refs. [32,33] for vibration problems. These approaches
are based on modifying element stiffness matrix and/or mass matrix
in low-density regions. However, buckling eigenvalue analysis requires
construction of the geometric stiffness matrix of each element, which is
a function of its current axial stresses. Therefore, pseudo mode identi-
fication within STO is more complicated and requires specific method-
ologies to be developed.

The present paper proposes an efficient methodology for
compliance- and stress-based topology optimization of frame struc-
tures (with moment-resisting connections) under overall and individ-
ual member buckling constraints. This article is structured as follows.
Section 2 reviews the minimum compliance and stress-based design
for frame structures using sections from the AISC design manual [34].
Section 3 proposes a new methodology for pseudo-mode identification
(specific to frame structures), which is integrated within an eigenvalue
analysis for overall structural stability. Moreover, the minimum buck-
ling load factor is accurately estimated using a p-norm function. The
next focus of Section 3 is on determining individual member buck-
ling through controlling their Euler elastic buckling loads. Here, a
new constraint is proposed to aggregate the resulting constraints into
a single one, thereby increasing computational efficiency. An efficient
method for sensitivity analysis of the newly proposed design constraints
is presented that allows using gradient-based optimizers in Section 4,
which also presents the solution algorithm. Four numerical examples
are solved in Section 5, which show the effectiveness of the proposed
methodology to optimize stress or compliance-based design objectives
while controlling instabilities. Moreover, the designs are compared and
it is shown that both overall and individual member buckling con-
straints are required to ensure design safety. Section 6 offers concluding
remarks.

2. Compliance-based and stress-based topology optimization of
steel frames

This section reviews the minimum compliance (compliance-based)
and stress-based topology optimization under linear elastic condi-
tions.

2.1. Compliance-based design

We begin with the well-known minimum compliance topology opti-
mization of frames, which is defined as follows:

min
𝐚

C = 𝐟T𝐝(𝐚) (1)

s.t. 𝐊(𝐚)𝐝(𝐚) = 𝐟

𝐚T 𝐥 ≤ v

amin < ae ≤ amax

where boldface lower and upper case letters symbolize vectors and
matrices respectively. In the above formulation, the objective func-
tion is the compliance C. The first constraint is used to enforce static
equilibrium under the force vector 𝐟 . The global stiffness matrix is
denoted with 𝐊 and the displacement vector is shown with 𝐝. The
design variables are member cross-sectional areas stored in the vector
𝐚, with an individual member of ae. The other cross-sectional prop-
erties (e.g., moment of inertia) are mapped from the AISC design
manual with the approach described in Refs. [4,5]. The member
lengths are collected in the vector 𝐥, and the total amount of avail-
able volume of material is denoted by v. Therefore, the third con-
straint limits the available volume. Furthermore, amin is a small quan-
tity that limits minimum cross-sectional area to avoid singularity of
the stiffness matrix, and amax is the maximum allowable cross-sectional
area. These two establish the bounds on the design variables as
expressed in the third constraint. Computational efficiency is achieved
via using gradient-based optimizers with the sensitivity provided in
Refs. [4,5].

2.2. Stress-based design

The designs using the objective function in Eq. (1) are sought so
that a measure of structural stiffness (inverse of compliance) is max-
imized. In structural engineering applications, stresses (usually von
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