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A B S T R A C T

This work proposes an improved method for gradient-based topology optimization in a discrete setting of design
variables. The method combines the features of BESO developed by Huang and Xie [1] and the discrete topology
optimization method of Svanberg and Werme [2] to improve the effectiveness of binary variable optimization.
Herein the objective and constraint functions are sequentially linearized using Taylor’s first order approximation,
similarly as carried out in [2]. Integer Linear Programming (ILP) is used to compute globally optimal solutions
for these linear optimization problems, allowing the method to accommodate any type of constraints explicitly,
without the need for any Lagrange multipliers or thresholds for sensitivities (like the modern BESO [1]), or
heuristics (like the early ESO/BESO methods [3]). In the linearized problems, the constraint targets are relaxed
so as to allow only small changes in topology during an update and to ensure the existence of feasible solutions
for the ILP. This process of relaxing the constraints and updating the design variables by using ILP is repeated
until convergence. The proposed method does not require any gradual refinement of mesh, unlike in [2] and
the sensitivities every iteration are smoothened by using the mesh-independent BESO filter. Few examples of
compliance minimization are shown to demonstrate that mathematical programming yields similar results as
that of BESO for volume-constrained problems. Some examples of volume minimization subject to a compliance
constraint are presented to demonstrate the effectiveness of the method in dealing with a non-volume constraint.
Volume minimization with a compliance constraint in the case of design-dependent fluid pressure loading is also
presented using the proposed method. An example is presented to show the effectiveness of the method in
dealing with displacement constraints. The results signify that the method can be used for topology optimization
problems involving non-volume constraints without the use of heuristics, Lagrange multipliers and hierarchical
mesh refinement.

1. Introduction

The methods for structural topology optimization have been under
intense research during the last couple of decades. The ultimate goal of
topology optimization is to obtain binary solutions representing optimal
structural layouts. The topology optimization problem can be modeled
using binary variables, 0 and 1 representing the void and solid regions
of the structure, respectively. This type of binary variable optimiza-
tion presents an extremely challenging large-scale integer programming
problem and alternatives to this formulation were proposed [4].

Towards obtaining 0∕1 structures, the first widely accepted ideas
considered topology optimization of continuum structures with the
relaxation of binary constraint {0,1} by using continuous density design
variables [5]. This transforms the binary variable optimization prob-
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lem into a density distribution problem, used in the homogenization-
based method and the SIMP (Solid Isotropic Material with Penalization)
method [6,7]. The SIMP model rapidly became a popular material inter-
polation based method with the work by Ref. [8] and his role in dissem-
ination of the method [9]. The method was successfully applied to solve
a range of important problems, such as design for nonlinear responses
[10–12], stress-based design [13], design for fluid flow [14,15], dynam-
ics design [16] and others. In such methods, gray transition material
regions are intrinsically allowed between solid and void in the con-
tinuous variables definition. This leads to optimal solutions with non-
explicitly defined structural boundaries and, despite their popularity,
this is challenging the development of these methods in problems where
explicit boundary description is important, e.g., in design-dependent
multiphysics problems.

Some researchers proposed few techniques to reduce or eliminate
intermediate density (gray scale) elements in the final solutions, such
as projection methods. These techniques consider Heaviside functions
[17,18] or morphology-based operators [19,20] to project filtered den-
sities into 0∕1 solution space while aiming length scale control.https://doi.org/10.1016/j.finel.2017.10.006
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Fig. 1. Filtering - Areas of averaging for nodal and filtered elemental sensitivities.

There are some gradient-based methods created for obtaining 0∕1
optimal solutions. One class consists of boundary-description based
methods, e.g. the level-set method (LSM), in which an implicit func-
tion is used to describe the structure with clearly defined boundaries.
In these methods, the design variables are boundary points and shape
sensitivities are derived to predict design changes [21–23]. The opti-
mization is based on the structural shape movements and, thus, the
final solution is strongly affected by the initial design configuration. A
novel method with explicit boundary representation was developed by
Christiansen et al. [24] with the combination of shape and topology
optimization. Other class of gradient-based methods that obtain 0∕1
designs employs a discrete approach, which is the focus of this paper.

The most established discrete topology optimization method is the
Bi-directional Evolutionary Structural Optimization (BESO) [25]. The
idea is to switch variables between void and solid using a design update
scheme where sensitivities serve as indicators of the design variable per-
formance. Although the idea was initially proposed by Xie and Steven
[26], the method as it is currently used was developed by Huang and
Xie [1], presenting convergent and mesh-independent solutions. Com-
prehensive reviews on the BESO methods are given in Refs. [27,28].
The method has been applied to a wide range of problems like nonlin-
ear structures [29], natural frequency maximization [30,31], material
optimization and multiscale problems [32–37], multiphysics problems
[38,39], etc. The design variables are updated based on the thresholds
of sensitivity numbers corresponding to the objective function, and the
thresholds are set based on the evolutionary ratios. In this work, the use
of mathematical programming enables to update the design variables
without using any thresholds. Another discrete topology optimization
method was proposed by Svanberg and Werme [40] where the authors

effectively proposed a sequential integer linear programming approach,
where one starts with a coarse mesh to solve an optimization prob-
lem and uses the final solution of this problem as the initial solution
for optimization on a refined mesh and so on. They also fix a region
of the structure every iteration to speed up the optimization [2]. The
method proposed in this work uses a BESO filter to smoothen the sen-
sitivities, which makes it robust and removes the need for hierarchical
mesh refinement.

One more discrete structural optimization method uses Genetic
Algorithms. These are derivative-free techniques based on natural selec-
tion. The design variables are genetically encoded and a pool of solu-
tions are heuristically updated over generations [41,42]. There are
too many ways of designing these algorithms and convergence is not
always guaranteed. The heuristics used for cross over and selection are
problem-dependent and greatly affect convergence.

While density-based methods are very well developed but do not
present explicit boundaries during optimization, the BESO method
showed effective potential as a binary approach such as in prob-
lems where boundary identification is important, e.g., in fluid-structure
interaction problems [43]. The modern BESO method [1] updates the
design variables relying on a fixed change in volume fraction every
iteration, and is not based on mathematical optimization. Thus, it is not
guaranteed that each iteration of BESO is an optimal step. The early
ESO/BESO methods solved volume minimization problems with stress
[26], displacement and frequency constraints [44]. These methods are
based on heuristics [3] and are non-convergent [1]. The modern BESO
method uses Lagrange multipliers to deal with non-volume constraints.
The selection and updating of these multipliers is not trivial. This paper
aims to create an improved discrete topology optimization method by

Fig. 2. Design domains and their loading configurations.
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