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Compressive sampling has become a widely used approach to construct polynomial chaos 
surrogates when the number of available simulation samples is limited. Originally, these 
expensive simulation samples would be obtained at random locations in the parameter 
space. It was later shown that the choice of sample locations could significantly impact 
the accuracy of resulting surrogates. This motivated new sampling strategies or design-
of-experiment approaches, such as coherence-optimal sampling, which aim at improving 
the coherence property. In this paper, we propose a sampling strategy that can identify 
near-optimal sample locations that lead to improvement in local-coherence property and 
also enhancement of cross-correlation properties of measurement matrices. We provide 
theoretical motivations for the proposed sampling strategy along with several numerical 
examples that show that our near-optimal sampling strategy produces substantially more 
accurate results, compared to other sampling strategies.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In order to facilitate stochastic computation in analysis and design of complex systems, analytical surrogates that approx-
imate and replace full-scale simulation models have been increasingly studied. One of the most widely adopted surrogates 
is the polynomial chaos expansion (PCE), which approximates the quantity of interest (QoI) by a spectral representation 
using polynomial functions of random parameters [1–4]. In estimating these spectral surrogates, non-intrusive stochastic 
techniques, based on either spectral projection or linear regression, are widely used especially because they don’t require 
modifying deterministic solvers or legacy codes, which is an otherwise cumbersome task [5]. These non-intrusive techniques 
are still the subject of ongoing research as the number of required samples for accurate surrogate estimation rapidly grows 
with the number of random parameters, even when efficient techniques such as sparse grid are used [6–9].

More recently, researchers have developed techniques, based on compressive sampling (CS), that are particularly ad-
vantageous when surrogate expansions are expected to be sparse, i.e. the QoI can be accurately represented with a few 
polynomial chaos (PC) basis functions. Compressive sampling was first introduced in the field of signal processing to recover 
sparse signals using a number of samples significantly smaller that the conventionally used Shannon–Nyquist sampling rate 
[10–12]. Motivated by the fact that the solution of many high dimensional problems of interest, such as high dimensional 
PDEs, can be represented by sparse, or at least approximately sparse, PCEs, CS was proposed in [13–15] to estimate PC coef-
ficients in underdetermined cases. As CS theorems suggest, the success of sparse estimation of PCE depends not only upon 
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the sparsity of the solution of stochastic system, but also on the coherence property of the Vandermonde-like measurement 
matrix, formed by evaluations of orthogonal polynomials at sample locations [10], as will be elaborated later.

Several efforts have been made in order to improve the two mentioned conditions for successful recovery. For instance 
in [16], for Hermite expansions with Gaussian input variables, the original inputs are rotated such that a few of the new 
coordinates, i.e. linear combinations of original inputs, have significant impact on QoI, thereby increasing the sparsity of 
solution and, in turn, the accuracy of recovery. The second condition, i.e. coherence of the measurement matrix, can be 
poor especially when trial expansions are high-order and/or high-dimensional. To remedy this, the iterative approaches in 
[17,18] can be used to optimally include only the “important” basis functions into the trial expansion and its associated 
measurement matrix. Focusing on this second condition, another class of methods have proposed sampling strategies that 
produce less coherent measurement matrices [19–21]. Among these approaches, the sampling strategy proposed in [21] was 
designed to be optimal in achieving the lowest local-coherence.

In this work, we introduce a near-optimal sampling strategy by further improving the local-coherence-based sampling of 
[21] and filtering sample locations based on cross-correlation properties of the resulting measurement matrix. Specifically, 
we establish quantitative measures to capture these cross-correlation properties between measurement matrix columns, 
and use these measures as the criteria for near-optimal identification of sample locations. It will be demonstrated that a 
sampling strategy that seeks to optimize these measures will lead to CS results that on average outperforms all other CS 
sampling strategies. This paper is organized as follows. Section 2 presents general concepts in compressive sampling and its 
theoretical background. In Section 3, we introduce our sampling algorithm along with relevant theoretical supports. Finally, 
Section 4 includes numerical examples and discussions about the advantages of the proposed approach.

2. Setup and background

2.1. Polynomial chaos expansion

Let I� ⊆ R
d be a tensor-product domain that is the support of �, where � = (�1, ..., �d) is the vector of independent 

random variables, i.e. �i ∈ I�i and I� = ×d
i=1 I�i . Also, let ρi : I�i → R

+ be the probability measure for variable �i and let 
ρ(�) = ∏d

i=1 ρi(�i). Given this setting, the set of univariate orthonormal polynomials, {ψα,i}α∈N0 , satisfies∫
I�i

ψα,i(ξi)ψβ,i(ξi)ρi(ξi)dξi = δαβ, α,β ∈N0, (1)

where N0 = N ∪{0}, and δmn is the delta function. Therefore, the density function of �i , ρi(�i), determines the type of poly-
nomial. For example, Gaussian and uniform probability distributions enforce Hermite and Legendre polynomials, respectively. 
The d-dimensional orthonormal polynomials are then derived from the multiplication of one dimensional polynomials in all 
dimensions. For example,

ψα(ξ) = ψα1,1(ξ1)ψα2,2(ξ2)...ψαd,d(ξd), α = (α1,α2, ...,αd). (2)

Consequently, we have∫
I�

ψα(ξ)ψβ(ξ)ρ(ξ )dξ = δαβ , α,β ∈ N
d
0. (3)

Using this construction, any function u(�) : I� →R that is square-integrable can be represented as

u(�) =
∑
α∈Nd

0

cαψα(�), (4)

where {ψα}α∈Nd
0

is the set of orthonormal basis functions satisfying Equation (3). However, for computation’s sake, u(�) is 
approximated by a finite order truncation of PC expansion given by

uk(�) :=
∑

α∈	d,k

cαψα(�), (5)

where k is the total order of the polynomial expansion and 	d,k is the set of multi-indices defined as

	d,k := {α ∈ N
d
0 : ‖α‖1 ≤ k}. (6)

The cardinality of 	d,k , i.e. the number of expansion terms, here denoted by K , is a function of d and k according to

K := |	d,k| = (k + d)!
k!d! . (7)
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