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Uncertainty quantification is an emerging research area aiming at quantifying the variation 
in engineering system outputs due to uncertain inputs. One approach to study problems 
in uncertainty quantification is using polynomial chaos expansions. Though, a well-known 
limitation of polynomial chaos approaches is that their computational cost becomes 
prohibitive when the dimension of the stochastic space is large. In this paper, we propose 
a procedure to solve high dimensional stochastic problems with a limited computational 
budget. The methodology is based on an existing non-intrusive model reduction scheme for 
polynomial chaos representation, introduced by Raisee et al. [1], that is further extended by 
introducing sparse polynomial chaos expansions. Specifically, an optimal stochastic basis is 
calculated from a coarse scale analysis, using proper orthogonal decomposition and sparse 
polynomial chaos and is then utilized in the fine scale analysis. This way, the computational 
expense on both the coarse and fine discretization levels is drastically reduced. Two 
application examples are considered to validate the proposed method and demonstrate its 
potential in solving high dimensional uncertainty quantification problems. One analytical 
stochastic problems is first studied, where up to 20 uncertainties were introduced in 
order to challenge the proposed method. A more realistic CFD type application is then 
discussed. It consists of a two dimensional NACA 0012 symmetric profile operating at 
subsonic flight conditions. It is shown that the proposed reduced order method based on 
sparse polynomial chaos expansions is able to predict statistical quantities with little loss 
of information, at a cheaper cost than other state-of-the-art techniques.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty quantification (UQ) is the process of describing the stochastic behavior of outputs of interest due to uncertain 
inputs. Many problems in engineering and science are subject to uncertainties on input variables and design variables. An 
example would be to predict the aerodynamic forces acting on an airplane operating at specific flight conditions. Small 
differences in airspeed, atmospheric conditions, as well as manufacturing tolerances on airplane components will lead to 
different predictions, which may have disastrous consequences if they are not accounted for from the premises of the 
industrial design process. This involves identifying and quantifying relevant uncertainties, modeling and incorporating them 
into a non-deterministic methodology.
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Nevertheless, the inclusion of uncertainties in real-life engineering problems is, to date, lagging behind. The main reasons 
are the complexity and cost of computational models describing real-life problems, e.g. Computational Fluid Dynamics (CFD) 
or Finite Element (FE) solvers, in conjunction with the often high number of uncertain parameters, all leading to high 
computational cost. It is therefore crucial to develop a strategy to propagate uncertainties in presence of a large number of 
parameters.

The Polynomial Chaos (PC) method has received much attention recently in a wide range of applications [2–6]. The 
method is based on an expansion of the stochastic solution in terms of orthogonal polynomials in the space of stochastic 
variables. PC was formulated first by Wiener [7] to model stochastic processes governed by Gaussian-shaped random vari-
ables. It was later extended by Xiu and Karniadakis [8,9] to various distributions using orthogonal polynomials from the 
so-called Askey scheme [10]. This extension is often referred to as generalized PC. The main advantage of PC methods is 
their higher statistical convergence rates, provided that the response quantity is smooth [11].

PC approaches can be classified as either intrusive or non-intrusive. In intrusive PC, the PC expansion is directly inte-
grated in the governing equations describing the problem. Applications of intrusive PC to CFD problems exist [12–16] but 
we rather focus on non-intrusive methods as they require no modification to the existing solver and are therefore more 
attractive from an engineering point of view. In non-intrusive methods, the deterministic solver is indeed utilized as a sep-
arate entity (black-box) that is called at specific points selected in the stochastic space. This results in a linear system of 
equations which can then be solved to compute the PC coefficient values. However, the number of samples grows exponen-
tially with the number of uncertainties. This is a well-known limitation of standard PC methods, often referred to as the 
curse-of-dimensionality.

To mitigate this curse, a variety of stochastic computational methods have been proposed in the literature [17–19]. A re-
curring idea to speed-up the process has been to exploit different level of discretizations. Major computational savings can 
be achieved by distributing the workload between different meshes, as shown e.g. for non-intrusive PC based on collocation 
and regression [20,21]. This concept has been successfully applied to aerodynamic problems where important CPU savings 
were observed compared to an approach based on a single high-fidelity expansion.

Methods based on reduced basis decomposition of the stochastic field and PC expansions have also been proposed in 
[1,22–28]. In particular, an interesting idea, proposed by Doostan et al. [23], is to construct an optimal stochastic basis with 
inexpensive calculation on a coarse grid and then use this basis for the fine scale analysis. The method was first successfully 
applied by Doostan et al. [23] to 2D solid mechanics problems using intrusive PC, where the number of unknowns was 
reduced from 165 to 5 using a 3rd order PC. It was later extended in [1,22] to non-intrusive PC using a regression approach 
and was mostly validated on CFD-based applications. Advantages of the method are twofold: important CPU savings can 
be achieved with little loss in accuracy and it also gives access to complete stochastic field information, which is a great 
analytical tool. However, the approach still requires the construction of a full PC expansion on the coarse grid, which in 
some case could turn out to be very complicated or even impossible.

In a recent past, adaptive methods [17,29] have also emerged as a remedy for solving high-dimensional stochastic prob-
lems. These methods rely upon the assumption that the model output can be reasonably well approximated using very few 
polynomial functions. In most applications, only a few parameters are responsible for response variability. This observation 
led to the concept of sparsity in the full PC expansion, i.e. only a limited number of PC coefficients are different from zero. 
With this in mind, regression-based sparse PC methods [17,29] have been developed and attempt to detect sequentially 
the most important PC terms using only few samples. Promising results were obtained for high dimensional solid mechan-
ics problems as well as CFD-based problems, where important CPU savings were demonstrated compared to classical PC 
solution schemes. To the best of the authors’ knowledge, these adaptive methods are only applied on single high-fidelity 
response models.

In this paper, a computationally efficient methodology is devised for solving high dimensional stochastic problems. 
A Proper Orthogonal Decomposition (POD)-based model reduction scheme, combined with non-intrusive sparse PC, is de-
veloped. Relative to the current state-of-the-art, we propose an extension of [1,22] by deriving the optimal stochastic basis 
on a coarse grid using sparse PC expansions. In comparison with the aforementioned work, the main advantage of the 
proposed method lies in reducing significantly the workload on the coarse grid, specially for problems exhibiting a large 
number of uncertainties. The method is non-intrusive and enables to achieve great savings in terms of CPU cost compared 
to classical PC solution schemes. Also, the proposed methodology is applicable to field data, which are often encountered 
in many engineering applications. It is first validated using an analytical benchmark example. A CFD-based problem is also 
shown to demonstrate the power of the proposed methodology when applied to a more practical application.

This paper is organized as follows. Section 2 gives a brief description of the proposed methodology. It emphasizes the 
major challenges and introduces the concept of sparse PC expansion and its coupling with proper orthogonal decomposition. 
Numerical examples are given in Section 3 to showcase the performance of the proposed methodology.

2. Methodology

This section describes the theoretical background of the proposed methodology. We present an extension of the stochastic 
model reduction scheme introduced in [1] by constructing the covariance structure using adaptive sparse PC expansions.
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