
Journal of Computational Physics 324 (2016) 246–257

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

GPU accelerated spectral finite elements on all-hex meshes

J.-F. Remacle a,b,∗, R. Gandham a, T. Warburton a

a Department of Computational and Applied Mathematics, Rice University, United States
b Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), Bâtiment Euler, 
Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 July 2015
Received in revised form 2 August 2016
Accepted 4 August 2016
Available online 9 August 2016

Keywords:
Spectral finite elements
GPU computing
Hexahedral meshes

This paper presents a spectral element finite element scheme that efficiently solves ellip-
tic problems on unstructured hexahedral meshes. The discrete equations are solved using 
a matrix-free preconditioned conjugate gradient algorithm. An additive Schwartz two-scale 
preconditioner is employed that allows h-independence convergence. An extensible multi-
threading programming API is used as a common kernel language that allows runtime 
selection of different computing devices (GPU and CPU) and different threading interfaces 
(CUDA, OpenCL and OpenMP). Performance tests demonstrate that problems with over 
50 million degrees of freedom can be solved in a few seconds on an off-the-shelf GPU.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recent research efforts [1,23] have led to the development of 3D hex-dominant mesh generation systems that are fast 
and reliable. It is now possible (e.g. with Gmsh [10]) to create meshes of general 3D domains that contain over 80% of 
hexahedra in volume in a fully automatic manner.

We foresee that fully automatic hex-meshing procedures will be available in the next decade. This perspective allows 
finite element researchers to reconsider some commonly held beliefs, namely that tet-meshing may not remain the only 
solution for automatic mesh generation.

Quadrilateral meshes in 2D and hexahedral meshes in 3D are usually considered to be superior to triangular/tetrahedral 
meshes. There are numerous modeling reasons to prefer hexes: boundary layers in CFD [22], inaccuracy or locking problems 
in solid mechanics [2].

From a high order spectral finite element perspective, hex meshes provide considerable advantages. First, although this 
is not specific to spectral finite elements, a hex mesh contains about seven times fewer elements than a tet mesh with the 
same number of vertices. Fewer elements mean less data storage and a faster assembly procedure. Taking advantage of the 
inherent tensor-product structure of hexahedral basis functions one can dramatically reduce the number of floating point 
operations for computing finite element operators. The local cartesian structure of the mesh provides natural overlapping 
patches of elements that enables the construction of efficient local preconditioners. Finally, spectral hex-meshes can achieve 
relatively high throughput on GPUs following the approaches described below.
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The use of GPUs for accelerating finite element solvers for elliptic problems is of course not new. In early work Göddeke 
et al. [13] investigated scalability of finite element solvers on GPU clusters. Later Göduke described multigrid methods 
for finite element methods on GPU clusters [12]. Cecka et al. [3] and Markall et al. [16] discussed algorithms for efficient 
stiffness matrix assembly on GPUs. Knepley et al. [15] described algorithms for efficient evaluation of finite element integrals 
on GPUs. Gaveled et al. [11] introduced a finite element toolkit that integrates geometric multigrid techniques with sparse 
approximate inverse algorithms on GPUs. Furthermore, pushing the envelope of GPU based finite element software design 
Fu et al. [7] describe a systematic approach to pipelining finite element methods. Largely these prior approaches have 
focused on optimizing the process of stiffness matrix assembly. The current work differs by first using a high-order finite 
element approach and secondly adopting a matrix-free approach that in its leanest form only requires storage for mesh 
vertex coordinates, residual vector, solution vector, load vector, and indexing arrays.

In this paper, we propose a numerical scheme that allows us to solve Poisson-like problems on unstructured all-hex 
meshes using the massive multi-threading capacities of modern computer hardware. An extensible multi-threading pro-
gramming API is used as a common kernel language [17] to try our numerical scheme on different devices (GPU and CPU) 
and using different thread programming interfaces (CUDA, OpenCL, and OpenMP).

This paper is structured as follows. In §2, standard properties of spectral finite elements are presented in brief. The 
numerical method is presented in §3 and §4: preconditioned conjugate gradients are used for solving linear systems. A two-
scale additive Schwartz preconditioner is used for accelerating the convergence. Details of implementation are presented 
in §5 and results are presented in §6.

2. Spectral finite elements on hexahedral meshes

Consider a domain � ∈ R3 with boundary � = �D ∪ �N and the following model problem: find u(x, y, z) that satisfies

cu − ∇ · (κ∇u) = s on �, (1)

u = u0 on �D (2)
∂u

∂n
= g on �N (3)

where c(x, y, z) > 0, κ(x, y, z) > 0 and s(x, y, z) is a given source term. We further suppose that s, u0 and g satisfy the 
standard regularity assumptions and, without loss of generality, that u0 = 0. A weak formulation of (3) is: find u ∈ H1

0(�)

that satisfies∫
�

[κ∇u · ∇w + cu w] dxdydz =
∫
�

r w dxdydz ∀w ∈ H1
0(�) (4)

where H1
0(�) = {u ∈ H1(�), u|� = 0}.

2.1. Interpolation

Consider now a mesh constructed of unstructured hexahedra. On each hexahedron e, the finite element interpolation 
basis is a tensor products of one dimensional basis of Pn that are the set of Lagrangian interpolants φ j(t), j = 0, . . . , n on 
the Gauss–Lobatto Legendre (GLL) quadrature points in the reference domain: ti ∈ [−1, +1], i = 0, ..., n, φ j(ti) = δi j [4].

In the reference hexahedron ξ, η, ζ ∈ [−1, +1] of element e, fields are interpolated as

ue(ξ,η, ζ ) =
n∑

i=0

n∑
j=0

n∑
k=0

uijk;eφi(ξ)φ j(η)φk(ζ ) (5)

where uijk;e are the values of u at the (n + 1)3 nodes of element e. We define the derivation matrix D following [4] as

Dij = dφi

dt

∣∣∣∣
t=t j

. (6)

2.2. Local and global vectors

Consider a mesh made of NE unstructured hexahedra with a total of N GLL nodes and a scalar field u interpolated on 
the mesh. In the following, two representations of u will be used, one that is defined locally to one element and a second 
that is defined globally on the mesh. The local version of u is denoted by

uijk;e, 0 ≤ i, j,k ≤ n, 1 ≤ e ≤ NE .

A global indexing of the GLL nodes is defined that associates a unique number to every GLL node N of the mesh. The global 
version of u is noted
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