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Despite numerous computational advances over the last few decades, molecular dynamics 
still favors explicit (and thus easily-parallelizable) time integrators for large scale numerical 
simulation. As a consequence, computational efficiency in solving its typically stiff 
oscillatory equations of motion is hampered by stringent stability requirements on the 
time step size. In this paper, we present a semi-analytical integration scheme that offers 
a total speedup of a factor 30 compared to the Verlet method on typical MD simulation 
by allowing over three orders of magnitude larger step sizes. By efficiently approximating 
the exact integration of the strong (harmonic) forces of covalent bonds through matrix 
functions, far improved stability with respect to time step size is achieved without 
sacrificing the explicit, symplectic, time-reversible, or fine-grained parallelizable nature of 
the integration scheme. We demonstrate the efficiency and scalability of our integrator 
on simulations ranging from DNA strand unbinding and protein folding to nanotube 
resonators.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

With an ever-increasing need to understand complex behavior at the molecular level comes a high demand for compu-
tational methods that can simulate the macroscopic properties of systems from models describing the geometry and the 
interactions of their molecules. Molecular Dynamics (MD), in particular, has been proven helpful in nanomaterials and bio-
engineering, as it allows to understand observed phenomena and predict observations that would be difficult or costly to 
make experimentally. The drastic improvements in computational power witnessed in recent years have allowed to inves-
tigate the structure, dynamics, and even thermodynamics of increasingly complex biological molecules. Yet, only modest 
progress has been made in extending the size of the time step used in numerical schemes: since explicit time integrators 
are favored for their ease of parallelization, the time step size remains restricted by the highest frequency components of 
the intrinsic dynamics of the nuclei—typically arising from stiff bonding between atoms.

This paper tackles this long-standing issue, and proposes the use of a semi-analytical integrator derived from [16,11]
to reliably produce three orders of magnitude larger time steps in MD than regular integrators [60], for a resulting 
30-fold speedup on average. We demonstrate the efficiency and scalability of our explicit, structure-preserving, and easily 
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parallelizable approach on various typical MD simulation runs, varying from DNA unfolding and protein folding to nanotube 
resonators.

1.1. Related work

Classical versus Quantum Molecular Dynamics. While the motion of atoms and molecules can be obtained in principle by 
solving the time-dependent Schrödinger equation simultaneously for both electrons and nuclei, such a quantum mechanics 
approach remains too computationally prohibitive in practice to investigate large molecular systems (see [29] for recent 
advances). Instead, classical Molecular Dynamics uses Newtonian mechanics: it treats the nuclei (which are much heavier 
than electrons) as point particles in a force field that accounts for both their mutual interaction as well as the electronic 
interactions. This force field derives from a potential energy function that is formulated either from expectation values of 
the quantum system (see Section 2), or using empirical laws.

Numerical integration schemes. Given the typically large number of molecules involved in MD simulations, a fully analytical 
solution of the resulting Newtonian mechanical system is out of reach. Consequently, numerical methods that evaluate the 
position of each nucleus at (fixed or adaptive) time intervals are used to find computational approximations to the solutions, 
given proper initial conditions [28]. Established molecular dynamics simulators (e.g., LAMMPS [36]) often make use of the 
“velocity Verlet” integration scheme [60]—a simple, explicit integrator that can easily be parallelized and whose symplectic 
nature provides numerical benefits including exact momenta preservation and excellent energy behavior. However, solving 
for this initial value MD problem is particularly challenging due to the strong covalent bonds between nuclei, requiring 
painfully small time steps to properly capture the dynamics without generating instability. Turning these covalent bonds into 
rigid constraints (using RATTLE [4], SHAKE [51], or through internal variables [58] for instance) alleviates the most stringent 
time step restrictions, but at the cost of having to solve non-linear systems and a significant decrease in parallelizability. 
Computational efficiency has further increased over the past few years, either through algorithmic improvements (e.g., by 
computing the more distant interactions less often), or by leveraging specialized hardware for parallel computing (GPU 
computing). However, the ability to achieve longer time steps efficiently remains a major computational challenge.

1.2. Contributions

In this paper, we present a practical approach to computational molecular dynamics. We propose an efficient (explicit, 
second-order, and linear-time), structure-preserving (symplectic), and semi-analytical (exponential, or Gautschi-type1) inte-
gration scheme that allows the use of significantly larger time steps than usual methods through its closed-form treatment 
of the strongest bonding forces deriving from harmonic potentials.

The key ingredient of our approach, i.e., the use of an exponential integrator combined with a Krylov-based evaluation 
of matrix functions, has been proposed in the context of quantum molecular dynamics [29]; but hasn’t gained acceptance 
in classical MD so far. Yet, we will demonstrate that its use is particularly appropriate for Hamiltonian systems involving 
a potential energy with a strong harmonic part, such as the harmonic potentials of bounded atoms in combination with 
regular non-bonded potentials in MD, or in coarse-graining methods [34]. Moreover, our algorithm scales linearly with the 
number of atoms and exhibits excellent long-term preservation of momenta and energy, which are hallmarks of symplectic 
and time-reversible integrators. Finally, our scheme is easily parallelizable as it involves sparse matrix and vector operations, 
rendering it particularly attractive as a basis for large-scale MD computations.

2. Background

For completeness, we begin our exposition by reviewing the forces involved in molecular dynamics, then discussing the 
resulting stiffness of the differential equations that we wish to numerically simulate.

2.1. Ehrenfest potential

To bypass the difficulty of solving the time-dependent Schrödinger equation simultaneously for both electrons and nuclei, 
Ehrenfest was the first to describe the evolution in time of a molecular system using Newtonian (classical) dynamics where 
nuclei are simply submitted to a force field deriving from a single, effective potential, given as the mean expectation value 

1 The history of so-called exponential integrators [30] goes back to the late 1950s, when Joseph Hersch pointed out that traditional numerical integrators 
do not compute the correct solution even if the differential equation is analytically solvable. He then proposed an exact integration scheme for linear 
ordinary differential equations with constant coefficients, see [24]. Three years later, Walter Gautschi proposed the integration of the non-linear part of the 
variation of parameters formula with trigonometric polynomials, see [16]. Almost 20 years later, this approach was combined with the trapezoidal rule [11]
and a significant improvement was achieved in the late 1990s by Bosco García-Archilla, who introduced filter functions for the non-linear part arguments in 
this context [15]. Today, there exists a variety of exponential integrators, like multistep integrators of this type (cf. [9]), Rosenbrock methods (cf. [50]), and 
Runge–Kutta-based methods of simple (cf. [37]) and higher orders (cf. [14]) aiming at finding an efficient approximation of the solutions of stiff differential 
equations.
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