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The numerical solution of fractional partial differential equations poses significant compu-
tational challenges in regard to efficiency as a result of the spatial nonlocality of the 
fractional differential operators. The dense coefficient matrices that arise from spatial 
discretisation of these operators mean that even one-dimensional problems can be difficult 
to solve using standard methods on grids comprising thousands of nodes or more. In this 
work we address this issue of efficiency for one-dimensional, nonlinear space-fractional 
reaction–diffusion equations with fractional Laplacian operators.
We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-
free Newton–Krylov framework to advance the solution in time. A key advantage of this 
approach is the elimination of any requirement to form the dense matrix representation 
of the fractional Laplacian operator. We show how a banded approximation to this 
matrix, which can be formed and factorised efficiently, can be used as part of an 
effective preconditioner that accelerates convergence of the Krylov subspace iterative 
solver. Our approach also captures the full contribution from the nonlinear reaction term 
in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical 
examples are presented to illustrate the overall effectiveness of the solver.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Recently there has been a great deal of interest in the applied mathematics community concerning fractional calculus and 
its applications to modelling anomalous diffusion. Fractional derivatives are becoming widely used and accepted in models 
of diffusion-type processes where the underlying particle motion deviates from Brownian motion [2]. A typical application 
area is transport in porous media, where models of seepage flow [19], seawater intrusion [1] and wood drying [31], to name 
just three, make use of fractional derivatives. In other areas too, we see fractional models becoming established, such as 
in drug delivery [41], heart physiology [5,29], elasticity [30], quantum mechanics [17], bioengineering [21], optimal image 
processing [7] and magnetic resonance imaging analysis [22,9]. Analytical solution methods exist only for a small number 
of simple, mostly linear, fractional differential equations. To obtain solutions to more complex problems, numerical methods 
are required.
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In this paper we are concerned with fractional reaction–diffusion equations of the form

∂u(x, t)

∂t
= −κ

(
−∇2

)α/2
u(x, t) + S(u(x, t)) (1)

on the finite domain 0 ≤ x ≤ L, with homogeneous Dirichlet boundary conditions and initial condition u(x, 0) = u0(x). 
The operator 

(−∇2
)α/2

denotes the fractional Laplacian operator of order α ∈ (1, 2], which is defined through its spectral 
representation.

Definition 1. (See [13].) Suppose the Laplacian (−∇2) has a complete set of orthonormal eigenfunctions ϕn corresponding 
to eigenvalues λ2

n on a bounded region D, i.e., (−∇2)ϕn = λ2
nϕn; B(ϕ) = 0 on ∂B, where B(ϕ) is one of the standard three 

homogeneous boundary conditions. Let

Fγ =
{

f =
∞∑

n=1

cnϕn, cn = 〈 f ,ϕn〉
∣∣∣ ∞∑

n=1

|cn|2|λ|γn < ∞, γ = max(α,0)

}

then for any f ∈Fγ , (−∇2)α/2 f is defined by

(−∇2)α/2 f =
∞∑

n=1

cn(λ
2
n)α/2ϕn.

Using the matrix transfer technique proposed by Ilić et al. [14], the fractional PDE (1) is spatially discretised by first 
finding the matrix representation A of the standard Laplacian using finite differences or other such methods. The matrix 
representation of the fractional Laplacian is then given by Aα/2. For example, using finite differences with N uniform divi-
sions of width h = L/N , the semidiscrete form of (1) is the system of ODEs

u̇ = −κAα/2u + S(u) =: F(u), u(x,0) = u0(x) (2)

where A = tridiag(−1, 2, −1)/h2.
Aside from the usual challenges of nonlinearity and stiffness, Eq. (2) poses an additional challenge that is not present in 

standard (non-fractional) reaction–diffusion problems: Aα/2 is dense, even though A itself is sparse (indeed, tridiagonal, in 
our problem). Hence, it is natural to consider numerical methods for solving (2) that do not require explicit formation of 
Aα/2 and instead deal only with A. This becomes essential when solving problems on grids with many thousands of nodes, 
where the memory and computational expenses associated with forming and working with Aα/2 can be prohibitive, even in 
this one-dimensional setting.

There are a number of mature initial value problem solvers for stiff systems of nonlinear ODEs

u̇ = F(u) (3)

that can be configured to never form the Jacobian matrix J = ∂F/∂u, that is, to work Jacobian-free. CVODE, part of the 
SUNDIALS Suite of Non-linear and Differential/Algebraic Equation Solvers [12], is an excellent example. Such solvers appear 
very attractive in the present context because they avoid the need to work with dense matrices. They also tend to provide 
variable-order, variable-stepsize integration with sophisticated local error control among other desirable features.

In order to work Jacobian-free, these solvers typically employ some form of Newton–Krylov iteration [16] to resolve the 
solution at each timestep. In addition to providing the right hand side function F, the user of these solvers is also expected 
to provide a means of dealing with the stiffness in the problem. This is provided in the form of a preconditioner: a matrix 
or a routine that approximates the action of the inverse of the Jacobian (or related matrix) on an arbitrary vector.

While at first this last requirement appears to run counter to the idea of working Jacobian-free, in many cases a much 
simplified approximation to the Jacobian suffices for preconditioning purposes, provided it captures the dominant source of 
stiffness in the problem. In the present application, we seek a sparse approximation to the Jacobian that suffices for the 
purpose of preconditioning. A key contribution of this paper is demonstrating how to efficiently construct such a matrix.

A number of authors have also proposed efficient methods for solving (1), and other similar fractional PDEs. Yang et al. 
[39] considered a time- and space-fractional variation of (1) in two dimensions with no reaction term, and used the matrix 
transfer technique with finite difference and finite element discretisations in space. The solution was advanced in time by 
computing a matrix function vector product f (A)b where f (A) = (I + γ κAα/2), and this was carried out using a Krylov 
subspace projection method preconditioned with deflation.

Burrage et al. [6] considered (1) and its higher-dimensional generalisations. They used the matrix transfer technique with 
finite element discretisation in space, and a first order implicit/explicit Euler discretisation in time. They investigated several 
methods for computing the resulting matrix function vector products, including the contour integral method of Hale et al. 
[11], which is discussed in Section 2.2, the extended Krylov subspace method and the preassigned poles and interpolation 
nodes method.

Bueono-Orovio et al. [4] solved (1) and its higher-dimensional generalisations using Fourier spectral methods, with a first 
order, fully implicit backward Euler temporal discretisation. Fixed point iteration was used to solve the resulting nonlinear 
systems in Fourier space to advance the solution in time.
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