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The purpose of this article is to introduce a projection hybrid finite volume/element
method for low-Mach number flows of viscous or inviscid fluids. Starting with a 3D
tetrahedral finite element mesh of the computational domain, the equation of the
transport-diffusion stage is discretized by a finite volume method associated with a dual
mesh where the nodes of the volumes are the barycenters of the faces of the initial
tetrahedra. The transport-diffusion stage is explicit. Upwinding of convective terms is
done by classical Riemann solvers as the Q-scheme of van Leer or the Rusanov scheme.
Concerning the projection stage, the pressure correction is computed by a piecewise linear
finite element method associated with the initial tetrahedral mesh. Passing the information
from one stage to the other is carefully made in order to get a stable global scheme.
Numerical results for several test examples aiming at evaluating the convergence properties
of the method are shown.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Solving the incompressible Navier–Stokes equations by mixed (velocity–pressure) finite element methods is nowadays a
very well established subject. The main problem comes from the fact that, for stability purposes, the discretization spaces
for velocity and pressure cannot be chosen independently as they have to satisfy the so-called inf–sup condition see, for
instance, [9]. An alternative approach consists in adding stabilizing terms to the weak formulation (see, for instance, [4] or
[11]).

On the other hand, finite volume methods combined with approximate Riemann solvers have been successfully devel-
oped for compressible flows in the 1980’s (see, [21] and the references therein). The difference compressible/incompressible
deeply changes the physics and also the numerics. While for compressible flows pressure is directly related to other flow
variables as density and energy via a state equation, for incompressible flows pressure is a Lagrange multiplier that adapts
itself to ensure that the velocity satisfies the incompressibility condition. In order to handle the latter situation, the typical
explicit stage of finite volume methods has to be complemented with the so-called projection stage where a pressure cor-
rection is computed in order to get a divergence-free velocity. Many papers exist in the literature devoted to introduce and
analyze projection finite volume methods for incompressible Navier–Stokes equations (see, for instance, [1] or [18]). In order
to get stability, staggered grids have to be used to discretize velocity and pressure. While this can be done straightforwardly
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in the context of structured meshes, the adaptation to unstructured meshes is more tricky (see [2,7,8,19,22]). Other pos-
sibility is to extend the SIMPLE method (introduced in [17]), by using multiple pressure variables to account for different
physical effects, as was done in [14–16].

On the other hand, projection methods have been also used in combination with finite element discretizations (see [10]).
The projection methods, initially introduced for incompressible flows can be easily adapted to low-Mach number flows. In
fact, the main difference is that the divergence-free condition for the velocity is replaced by an equation prescribing the
divergence of the linear momentum density which is a conservative variable.

The purpose of this paper is to introduce a projection method for low-Mach number flows, both for viscous and inviscid
fluids. Starting with a 3D tetrahedral finite element mesh of the computational domain, the equation of the transport-
diffusion stage is discretized by a finite volume method associated with a dual finite volume mesh where the nodes of the
volumes are the barycenter of the faces of the initial tetrahedra. These volumes have been already used for the 2D shallow
water equation (see [2]) and allow us for an easy implementation of flux boundary conditions. For time discretization we
use the explicit Euler scheme. Upwinding the convective term is done by classical Riemann solvers as the Q-scheme of van
Leer or the Rusanov scheme (see, for instance, [21]). Concerning the projection stage, the pressure correction is computed
by continuous piecewise linear finite elements associated with the initial tetrahedral mesh. The use of the above “staggered”
meshes together with a simple specific way of passing the information from the transport-diffusion stage to the projection
one and vice versa lead to a stable scheme. The former is done by redefining the conservative variable (i.e. the momentum
density) constant per tetrahedron. Conversely, the finite element pressure correction is redefined to constant values on the
faces of the finite volumes and then used in the transport-diffusion stage. Moreover, several internal iterations can be done
at each time step but this is by no means necessary.

The outline of the paper is as follows. In Section 2 the low-Mach number flow equations are recalled. Section 3 is
devoted to the transport-diffusion stage. Besides a detailed description of the finite volume discretization we analyze the
approximation of the viscous term. For steady-state solutions, we decompose this term into two parts: one is handled
implicitly and the other one is taken explicitly in order to avoid solving linear systems at each time step while keeping
the CFL condition as the only condition to get stability. In Section 3 we describe the projection stage which is solved by
continuous piecewise linear finite elements. The overall algorithm is summarized in Section 4, where we comment on some
implementation issues. Finally, in Section 5 we show some numerical results obtained with the developed computer code
in order to assess the performance of the method. We include some academic problems in order to analyze the order of
convergence as well as several classical test problems from fluid mechanics.

2. Low-Mach number equations

The system of equations described in this section corresponds to a model for low-Mach number flows. The underlying
assumption is that the Mach number M is sufficiently small so that pressure p can be written as the sum of a spatially
constant function π and a small perturbation π ,

p(x, y, z, t) = π(t) + π(x, y, z, t),
π

π
= O

(
M−2), (1)

where π(t) is a data. The perturbation will be neglected in the state equation but it has to be retained in the momentum
equation.

The next item is to recall the system of equations to be solved. For the sake of simplicity, in this paper we assume that
temperature is a given function and hence the energy equation need not to be included. Thus, the compressible Navier–
Stokes equations reduce to the mass conservation law, the momentum equation and the equation of state, which are given,
respectively, by

∂ρ

∂t
+ div(ρu) = 0, (2)

∂ρu

∂t
+ ∂ F1(u,ρ)

∂x
+ ∂ F2(u,ρ)

∂ y
+ ∂ F3(u,ρ)

∂z︸ ︷︷ ︸
div(F(u,ρ))

+∇π − divτ = f(x, y, z, t), (3)

π = ρRθ. (4)

We use standard notations: ρ denotes the density and u = (u1, u2, u3)
t is the velocity vector. The flux tensor, F, depends

on velocity and density; it is given by Fi(u,ρ) = ρuiu, i = 1,2,3. The viscous part of the Cauchy stress tensor is denoted
by τ and f is a generic source term used in the analytical test problems to be considered below. Finally, in the equation of
state, R = R/M denotes the gas constant, where R is the universal constant (R = 8314 J/(kmol K)), M is the molecular
mass and θ is the absolute temperature which is supposed to be given, may be it has been obtained by solving the energy
conservation equation.

From (2) and (4) we get the following divergence condition:

div(ρu) = −∂ρ

∂t
= − ∂

∂t

(
π

Rθ

)
. (5)
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