
Parallel Computing 73 (2018) 16–27

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Exploring the interplay of resilience and energy consumption

for a task-based partial differential equations preconditioner

F. Rizzi a , ∗, K. Morris a , K. Sargsyan

a , P. Mycek

b , C. Safta

a , O. Le Maître

c ,
O.M. Knio

b , d , B.J. Debusschere

a

a Sandia National Labs, Livermore, CA, USA
b Duke University, Durham, NC, USA
c LIMSI, Orsay, France
d King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

a r t i c l e i n f o

Article history:

Received 29 June 2016

Revised 12 April 2017

Accepted 20 May 2017

Available online 25 May 2017

Keywords:

Resiliency

Server-client programming model

Dynamic voltage/frequency scaling

PDE

Domain-decomposition

Silent data corruption

a b s t r a c t

We discuss algorithm-based resilience to silent data corruptions (SDCs) in a task-based

domain-decomposition preconditioner for partial differential equations (PDEs). The algo-

rithm exploits a reformulation of the PDE as a sampling problem, followed by a solution

update through data manipulation that is resilient to SDCs. The implementation is based

on a server-client model where all state information is held by the servers, while clients

are designed solely as computational units. Scalability tests run up to ∼51 K cores show

a parallel efficiency greater than 90%. We use a 2D elliptic PDE and a fault model based

on random single and double bit-flip to demonstrate the resilience of the application to

synthetically injected SDC. We discuss two fault scenarios: one based on the corruption

of all data of a target task, and the other involving the corruption of a single data point.

We show that for our application, given the test problem considered, a four-fold increase

in the number of faults only yields a 2% change in the overhead to overcome their pres-

ence, from 7% to 9%. We then discuss potential savings in energy consumption via dynamic

voltage/frequency scaling, and its interplay with fault-rates, and application overhead.

© 2017 Published by Elsevier B.V.

1. Introduction

The evolution of computing platforms towards exascale presents key challenges related to resiliency, power, memory

access, concurrency and heterogeneous hardware [1–5] . There is no consensus on what a “typical” exascale architecture

might look like [2] . One of the main concerns is understanding how hardware will affect future computing systems in terms

of reliability, energy consumption, communication and computational models.

The main constraint to making exascale computing a reality is energy consumption [4] . The current target is to build

an exascale machine consuming ∼20 MW by 2020. Significant technological advances are required to make this objective

feasible, since current systems cannot be simply scaled up to reach this goal. These advancements need to span different

hardware aspects, ranging from underlying circuits, to power delivery as well as cooling technologies. Hardware-oriented

research should be complemented by cross-cutting effort s t ackling energy efficiency at the algorithm and programming

∗ Corresponding author.

E-mail address: fnrizzi@sandia.gov (F. Rizzi).

http://dx.doi.org/10.1016/j.parco.2017.05.005

0167-8191/© 2017 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.parco.2017.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2017.05.005&domain=pdf
mailto:fnrizzi@sandia.gov
http://dx.doi.org/10.1016/j.parco.2017.05.005

F. Rizzi et al. / Parallel Computing 73 (2018) 16–27 17

model level. There is consensus that a coordination of efforts is required between advances in programming systems and

the development of hardware to enable applications to run efficiently and correctly on exascale machines [1,3] .

Exascale simulations are expected to rely not only on thousands of CPU cores running up to a billion threads, but also

on extensive use of accelerators, e.g. Graphics Processing Units (GPUs) [1,3,5] . This framework will necessarily lead to sys-

tems with a large number of components. The presence of many components, the variable operational modes (e.g. lower

voltage to address energy requirements) and the increasing complexity of these systems (e.g. more and smaller transis-

tors) can become a liability in terms of system faults. Exascale systems are expected to suffer from errors and faults more

frequently than the current petascale systems [5,6] . Current parallel programming models and applications will require a

resilient infrastructure to be suitable for fault-free simulations across many cores for reasonable amounts of time. It will

become increasingly more important to develop resilient-aware applications for exascale, where fault-tolerance is explored

and quantified to assess whether or not they can tolerate expected failure rates.

Energy and resilience are tightly linked challenges. For instance, high resilience could be achieved through extensive

hardware redundancy, but this approach would yield a large power overhead, e.g. three times more expensive for triple-

redundancy. Checkpointing is currently the approach most widely used to recover from faults, but it is expected to become

unfeasible for exascale applications given the higher failure rates [3,5] . To address resilience without an excess power and/or

performance costs will require innovations and coordinated efforts across all system levels. At the application level, one

approach would be to design applications such that they are structured into stages having different resilience requirements.

This would allow one to isolate those data and computational units requiring resilience from other data and work units

where resilience is less needed.

This work presents a new task-based resilient domain-decomposition partial differential equation (PDE) preconditioner

implemented with a server-client programing model. The problem is reformulated such that the PDE solver is reduced to a

number of independent tasks to benefit concurrency and parallelism. The algorithm enables the application to be resilient to

silent data corruption (SDC), while the server-client model (SCM) enables resiliency to hard faults. Our implementation uses

the User Level Fault Mitigation MPI (MPI-ULFM) [7] , a fault tolerance capability proposed for the MPI standard that enables

a fault-tolerant MPI framework. In this work, however, we don’t focus on hard faults, whose analysis will be the subject of

a separate study, but limit our attention to SDCs. Our application can be seen as a preconditioner that will enable today’s

solvers to be used effectively on future architectures by operating on subdomain levels. Scalability tests run up to ∼51 K

cores show a parallel efficiency greater than 90%.

The server-client programming model provides a task-based application with an infrastructure that can potentially ad-

dress some of the concerns related to energy consumption and resiliency. The work we present here assumes a SCM running

on a machine with different capacity cores assigned to servers and clients. The idea pushed forward is that high-end high-

capacity/voltage/reliability nodes are reserved for the servers which hold all the state information of the application, while

lower-voltage higher-fault-rate components are used for clients which are in charge of the computation. This separation

of data and computation enables the overall reduction of energy consumption for large scale machines, provided that the

number of nodes hosting the servers is negligible compared to that hosting the clients, and the overhead associated with

clients with higher fault rates is sufficiently small.

The paper is organized as follows. In Section 2 , we describe the mathematical formulation; in Section 3 , we present the

implementation details; in Section 4 , we discuss the results, focusing on the scalability Section 4.1 , and resilience Section 4.2 ;

in Section 5 , we analyze the interplay between energy and resilience. Finally, Section 6 presents the conclusions.

2. Mathematical formulation

We present the formulation for a generic 2D elliptic PDE of the form

L y (x) = g(x) , (1)

where L is an elliptic differential operator, g (x) is a given source term, and x = { x 1 , x 2 } ∈ � ⊂ R

2 , with � being the target

domain region. We focus on Dirichlet boundary condition y (x) | x ∈ � = y � along the boundary � of domain �. A formulation

of the algorithm focusing on 1D elliptic PDEs can be found in [8] . Elliptic equations are chosen as test case because they are

a fundamental problem in physics.

Fig. 1 shows a high-level schematic of the algorithm’s workflow. The starting point is the discretization of the computa-

tional domain. In general, the choice of the discretization method is arbitrary, potentially heterogeneous across the domain,

e.g. uniform, or non-uniform rectangular grid, or a finite-element triangulation, etc.

The second step is the partitioning stage. The target 2D domain, �, is partitioned into a grid of n 1 × n 2 overlapping

regions (or subdomains), with n k being the number of subdomains along the x k th axis. The size of the overlap does not

need to be equal and uniform among all partitions, and can vary across the domain. The partitioning stage yields a set

of n 1 × n 2 subdomains �ij , and their corresponding boundaries �s i j
, for i = 0 , . . . , n 1 − 1 , and j = 0 , . . . , n 2 − 1 , where �s i j

represents the boundary set of the ij th subdomain �ij .

We define as our object of interest the set of solution fields along the boundaries, which we denote y (x) | x ∈ �s i j
for i =

0 , . . . , n 1 − 1 , and j = 0 , . . . , n 2 − 1 . Due to the overlapping, each subdomain �ij includes inner boundaries, �in
s i j

, i.e. the parts

of the boundaries contained within �ij that belong to the intersecting (neighboring) subdomains. The core of the algorithm

Download English Version:

https://daneshyari.com/en/article/6935072

Download Persian Version:

https://daneshyari.com/article/6935072

Daneshyari.com

https://daneshyari.com/en/article/6935072
https://daneshyari.com/article/6935072
https://daneshyari.com

