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ARTICLE INFO ABSTRACT
Article history: Association rule mining (ARM) is an important task in data mining with many practical
Available online 11 October 2014 applications. Current methods for association rule mining have shown unstable perfor-
mance for different database types and under-utilize the benefits of multi-core shared
Keywords: memory machines. In this paper, we address these issues by presenting a novel parallel
Ee‘lltl}em pattern mining method for finding frequent patterns, the most computational intensive phase of ARM.
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Our proposed method, named ShaFEM, combines two mining strategies and applies the
. - most appropriate one to each data subset of the database to efficiently adapt to the data
Association rule mining . .
Parallel algorithm characterlstlc's and. r}m.fast on both sparse f‘md dense databasgs..ln addition, qur new-
Databases lock-free design minimizes the synchronization needs and maximizes the data indepen-
dence to enhance the scalability. The new structure lends itself well to dynamic job
scheduling resulting in a well-balanced load on the new multi-core shared memory archi-
tectures. We have evaluated ShaFEM on 12-core multi-socket servers and found that our
method run up to 5.8 times faster and consumes memory up to 7.1 times less than the
state-of-the-art parallel method. For some test cases, ShaFEM can save up to 4.9 days of
execution time over the compared method.
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1. Introduction

Association rule mining (ARM) is one of the fundamental tasks in data mining. Since its first application for the analysis of
sales or basket data which was introduced by Agrawal et al. [1], ARM has been applied broadly in many fields with an
increasing number of applications such as market analysis, biomedical and computational biology research, web mining,
decision support, telecommunications alarm diagnosis and prediction, and network intrusion detection [2,4,7,8,13,14,46].
Because of the importance of this mining task, ARM has become an essential mining component of most popular database
systems like Oracle Database (RDBMS), Microsoft SQL Server, IBM DBS2 Database and IBM DBS2 and statistical software like
R, SAS and SPSS Clementine [24-26,43-45]. The increasing need to analyze big data has led to the development of new ARM
method that can leverage the computing power of emerging platforms to support this mining task. Furthermore, widening
the applicable areas of ARM requires algorithms that can perform efficiently on different data types.

1.1. Motivation

Several studies have shown that ARM methods typically worked well for certain types of databases. Most methods
performed efficiently on either sparse or dense databases but poorly on the other [11,15,17-22,28,30]. Table 1 presents
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Table 1

Running time on sparse and dense database.
Databases Type Minsup (%) Apriori Eclat FP-growth
Chess Dense 20 1924 77 89
Connect Dense 30 522 366 403
Retail Sparse 0.003 18 59 10
Kosarak Sparse 0.08 4332 385 144

the execution time of three well-known sequential algorithms Apriori [1], Eclat [10] and FP-growth [11] on sparse and dense
databases. It shows Eclat performs best on dense data while FP-growth runs fastest on the sparse ones (underline numbers
indicate the best execution times among the three algorithms).

Furthermore, the large data size and the amount of computation involved lead to the crucial need of applying parallel
computing for this mining task to speed up the large-scale data mining application. Most existing works have proposed par-
allel solutions for distributed-memory systems [9,34,35,37,38,40]. Some surveys [34,35] show that very few studies were
conducted on parallel frequent pattern mining algorithms for the shared memory multi-core platforms. Most of them have
based on Apriori that is far less efficient than the other algorithms (shown in Table 1). None of previous parallel work took
into consideration the data characteristics to improve the mining performance on different database types.

1.2. Contributions

We present a novel parallel ARM method named ShaFEM for the new multi-core shared memory platforms to solve the
above issues. The proposed method uses a new data structure named XFP-tree that is shared among processes to compact
data in memory. Then, each parallel process independently mines rules and based on the density of mining data being pro-
cessed dynamically selects and switches between two mining strategies where one is suitable for sparse data and the other
works well on dense data. The main contributions of our study include:

(1) A novel parallel mining method that can dynamically switch between its two mining strategies to adapt to the char-
acteristics of the database and run fast on both sparse and dense databases. This original contribution is based on the
recognition for the need to apply different data mining strategies as mining proceeds and the fact that the dataset
characteristics change during this processing, and therefore the need for runtime detection of when this should occur.

(2) A new efficient parallel lock free approach that applies new data structures to enhance the independence of parallel
processes, minimize the synchronization cost and improve the cache utilization. Additionally, its dynamic job sched-
uling for load balancing helps increase the scalability on multi-core shared memory systems. This is an important con-
tribution as ARM is a challenging problem for high performance computing. It has many dependent subtasks,
unpredictable workload and complex data structures and requires many reduction steps.

(3) We demonstrate the efficiency of our approach by conducting intensive experiments to benchmark ShaFEM and other
state-of-the arts mining approaches. We present an in-depth analysis of the impact of each technique employed and
the contributions made to the final performance of ShaFEM.

1.3. Paper organization

The rest of the paper is organized as follows. Section 2 introduces the problem statement and related works. The parallel
frequent pattern mining algorithm, ShaFEM, is presented in Section 3. The first mining stage to construct the XFP-tree is
demonstrated in Section 4. Section 5 details the second mining stage and describes the dynamic decision making process
to switch between the two mining strategies. We evaluate the scalability and analyze the performance merits of ShaFEM
in Section 6. The final section is our conclusion.

2. Background
2.1. The problem statement

Association rule mining (ARM) aims at discovering rules that specify the frequency co-occurrence of groups of itemsets,
subsequences, or substructures in a database. For example, an association rule of retail database can be of the form “70% of
customers who buy milk and butter also buy bread with confidence 90%"”. Detection of these interesting rules contributes to
the knowledge base used to build intelligence systems such as product recommendation, gene function prediction, network
intrusion detection, search engine ranking, etc. Google uses this mining task for their query recommendation system [9].

The association rule mining problem can be stated as follows: Let I = {i;,i>,. . .,i,} be the set of n distinct items in the trans-
actional database D. Each transaction T in D contains a set of items called itemset; a k-itemset is an itemset with k items. The
count of an itemset x is the number of occurrences of x in D and the support of x is the percentage of transactions containing x.
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