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A negative result is when the outcome of an experiment or a model is not what is expected or when a
hypothesis does not hold. Despite being often overlooked in the scientific community, negative results are
results and they carry value. While this topic has been extensively discussed in other fields such as social
sciences and biosciences, less attention has been paid to it in the computer vision community. The unique
characteristics of computer vision, particularly its experimental aspect, call for a special treatment of this
matter. In this manuscript, I will address what makes negative results important, how they should be dis-
seminated and incentivized, and what lessons can be learned from cognitive vision research in this regard.
Further, I will discuss matters such as experimental design, statistical hypothesis testing, explanatory versus
predictive modeling, performance evaluation, model comparison, reproducibility of findings, the confluence
of computer vision and human vision, as well as computer vision research culture.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

What is a negative result? One may characterize a negative result
as “when a hypothesis does not hold” or “when the outcome of an
experiment or a model is not what is expected”. Such a definition,
however, could be one out of many possible definitions. One may
argue that an unexpected result is actually a good useful positive
result to share. Another possible definition is that a negative result is
when the performance is not better given metrics such as accuracy.
Regardless of how negative results are defined, such challenging and
sometimes inconclusive findings are often discouraged and buried
in the drawers and computers. Therefore, the publication record
reflects only a tiny slice of the conducted research. In some sense
they fabricate the “dark matter” of science. Such findings, however,
still hold value. At the very least they can save resources by pre-
venting researchers from repeating the same experiments. Perhaps
the main reason for an overwhelmingly high number of negative
results not put forward for dissemination is the lack of incentives.
Interestingly, some researchers have even argued that most pub-
lished findings are false [1]. Some also claim that hiding negative
results is unethical. Nevertheless, negative results have been and
continue to be constructive in the advancement of the science (e.g.,
Michelson-Morley experiment [2]).
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To answer whether negative results are important in computer
vision, should be published, or even if it makes sense to talk about
them, first we need to investigate how computer vision research
is conducted relative to scientific practices and methodologies con-
ducted in other fields such as social or biological sciences. Computer
vision research consists of a mixture of theoretical and experimen-
tal research. A small fraction of publications introduce principled
theories for vision tasks (e.g., optical flow [3]). A large number of pub-
lications report models and algorithms (e.g., for solving the object
detection problem) that are more powerful than contending mod-
els. Thus, compared to other fields, computer vision is relatively less
hypothesis-driven and more practical. Some negative results offer
invaluable insights regarding strength and shortcomings of exist-
ing models and theories, while others provide smart baselines. The
emphasis has traditionally been placed on improving existing mod-
els in terms of performance over benchmark datasets. While some
papers conduct statistical tests, it is not the common practice. As
in some other fields, there is a high tendency among computer
vision researchers to submit positive results as such results are often
considered to be more novel by the reviewers.

Computer vision has its own unique characteristics making it dis-
tinct from other fields, thereby demanding a specific treatment of
negative results. Firstly, vision is an extremely hard problem which
has baffled many smart people throughout the history. The complex-
ity of the problem makes it difficult to run controlled experiments
and come up with a universal theory of vision. Secondly, often a
lot of variables are involved in building vision algorithms and in
analyzing large amounts of data. Further, fair comparison of several
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competing models using multiple evaluation scores exacerbates the
problem. To address these, it would be very helpful to borrow from
other fields (e.g., natural sciences) where experimental design and
statistical testing are integral parts of the scientific research.

The common practice in experimental hypothesis-driven fields
(e.g., cognitive science) includes carefully formulating a hypothesis,
identifying and controlling confounding factors, designing the right
stimulus set, collecting high quality data, and performing appropri-
ate statistical tests. These are complicated to perform in computer
vision research as often many factors are involved. In particular,
statistical analysis becomes very challenging in the presence of many
parameters and models. This makes it complicated to decide which
statistical test is needed or when statistical analysis is critical to
conduct. Principled and systematic gauging of the progress (rather
than relying on trials and error and luck) helps judge what truly
works and what does not and, hence steer the research in the
right direction. For instance, we might have not given up on neural
networks easily if we did more careful rigorous analyses in the past.

Notice that dealing with negative results is a very controversial
topic and still unsettled in many fields. So, do not expect this writing
to touch on all of the aspects. Rather, here, I try to shed light on
some less explored matters and put computer vision in a broader
perspective with respect to science in general, and its related fields
such as Neuroscience and Cognitive Science, in particular. Indeed,
further discussion is needed in the vision community to converge to
a consensus regarding treatment of negative results.

In what follows, first I elaborate on science versus engineering
and where computer vision fits. I will continue with a comparison
of computer and human vision research and how they relate to
each other in terms of goals, research methodologies and practices.
This is followed by discussions of negative results and statistical
analysis in the context of computer vision. Section 6 considers the
dissemination of negative results. Finally, a wrapup is presented in
the epilogue.

2. Computer vision: engineering or science?

Let’s start with the question of whether computer vision is a
scientific or an engineering discipline, or both. Science is concerned
with understanding fundamental laws of nature, whereas engineer-
ing involves the application of science to create technology, products
and services useful for society. Science asks questions about nature
while engineers design solutions to problems.

As a scientific discipline, computer vision is concerned with gain-
ing high-level understanding from digital images, video sequences,
views from multiple cameras, or multi-dimensional data. It seeks to
automate tasks that the human visual system can do and involves
the development of a theoretical and algorithmic basis to achieve
automatic visual understanding. Further, it deals with construct-
ing a physical model of the scene (i.e., how the scene is created),
how light interacts with the scene, as well as low-, intermediate-,
and high-level descriptions of the scene content [4]. In other words,
the ultimate goal of computer vision is image understanding, the
ability not only to recover image structure but also to know what it
represents. As a technological and engineering discipline, computer
vision seeks to apply its theories and models for the construction of
computer vision systems and applications.

Science and engineering are complementary and are beauti-
fully and happily married in computer vision. We have a very
solid in-depth scientific understanding of phenomena such as image
formation, depth perception, stereoscopic vision, color perception
and optical flow. Some engineering applications, among many,
include biometrics (robust face and fingerprint recognition), optical
character recognition, gesture recognition, motion capture, game
playing, structure from motion, image stitching, machine inspection,
retail, 3D model building, medical imaging, automotive safety,

autonomous cars, assistive systems, and surveillance (in traffic and
security). In this respect, computer vision is both theoretical (e.g.,
optical flow formulation) and experimental (e.g., model replication,
parameters tuning, hacks, and tricks).

3. Computer vision and biological vision

Vision is a broad interdisciplinary area. Both computer and
human vision systems share the same objective which is converting
light into useful signals from which accurate models of the physical
world can be constructed. This information helps an agent (e.g., be it
arobot or a human) live, act, and survive in its environment.

For a long time, human vision research has been concentrated on
understanding the principles and mechanisms by which biological
visual systems (with higher emphasis on primate vision) operate.
This is in essence a reverse engineering (or inverse graphics) task.
Likewise, computer vision research seeks a theory and engineering
implementation. Despite sharing the same goal, they own unique
characteristics. Early human visual sensory mechanisms, includ-
ing the retina and the Lateral Geniculate Nucleus (LGN), are much
more elaborate than current digital cameras (CCD sensors). Neural
networks in higher visual areas (e.g., visual ventral stream) accom-
modate a sophisticated hierarchical processing through cascades of
filtering (modeled as convolution), pooling, lateral inhibition, and
normalization mechanisms. The result is a selective and invariant
representation of the objects and scenes. This is somewhat akin to
what Convolutional Neural Networks (CNNs) [5] do. Almost half of
the human brain (considered to be the most complex known physi-
cal systems and thus a major scientific challenge) is devoted directly
or indirectly to vision. The entire brain needs about 20 W to oper-
ate (enough to run a dim light bulb). A processor as smart as the
brain requires at least 10 to 20 MW of electricity to operate [6]. As
to processing speed, the brain is still faster than the fastest super-
computers [7]. A remarkable capability of human vision is attention
(a.k.a active vision) which allows selecting the most relevant and
informative part of the massive incoming visual stimulus (at a rate of
108-10° bits/s) [8]. Both human and computer vision systems have
their own biases. Human vision is extremely sensitive to faces and
optical illusions. Similarly, computer vision systems get easily fooled
by adversarial examples [9]. One thing that we know, almost for sure,
is that vision should be solved by frameworks that start with extract-
ing simple features and build increasingly more complex ones. This
is mainly because the world we live in is compositional.

There has indeed been a cross-pollination in the two fields
(e.g., [10-21]). On the one hand, experimental paradigms and
psychophysics tools in cognitive vision have been exploited to study
the behavior of computer vision algorithms or to interpret how they
work. For example, Parikh and Zitnick [22] employed the image
jumbling paradigm, introduced in [23], to inspect whether some
computer vision algorithms capture local or global scene informa-
tion. Deng et al. [24] used the bubbling paradigm, proposed by
Gosselin and Schyns [25], to model fine grained object recognition.
The rapid (or ultra rapid) serial visual presentation [26,27], has been
utilized to investigate the quality of images generated by Generative
Adversarial Networks [28]. Vondrick et al. [29] and Fong et al., [30]
leveraged human recognition biases to improve machine classifiers.
On the other hand, computational tools have been exploited heav-
ily to understand how human vision works. For example, deep
convolutional networks have recently been used to study the repre-
sentational space in the visual ventral stream (e.g., [31]). Moreover, a
plethora of computer vision, image processing, and machine learning
tools have been utilized in biological vision research for the purposes
such as stimulus design, discovering cues humans might rely on in
solving a task, and modeling single neurons and neural populations.

In terms of performance, while computer vision has made large
strides, it is still nowhere near human vision. In general, it seems that
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