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A B S T R A C T

The problem of information fusion from multiple data-sets acquired by multimodal sensors has drawn significant
research attention over the years. In this paper, we focus on a particular problem setting consisting of a physical
phenomenon or a system of interest observed by multiple sensors. We assume that all sensors measure some
aspects of the system of interest with additional sensor-specific and irrelevant components. Our goal is to recover
the variables relevant to the observed system and to filter out the nuisance effects of the sensor-specific variables.
We propose an approach based on manifold learning, which is particularly suitable for problems with multiple
modalities, since it aims to capture the intrinsic structure of the data and relies on minimal prior model
knowledge. Specifically, we propose a nonlinear filtering scheme, which extracts the hidden sources of varia-
bility captured by two or more sensors, that are independent of the sensor-specific components. In addition to
presenting a theoretical analysis, we demonstrate our technique on real measured data for the purpose of sleep
stage assessment based on multiple, multimodal sensor measurements. We show that without prior knowledge
on the different modalities and on the measured system, our method gives rise to a data-driven representation
that is well correlated with the underlying sleep process and is robust to noise and sensor-specific effects.

1. Introduction

Often, when measuring a phenomenon of interest that arises from a
complex dynamical system, a single data acquisition method is not
capable of capturing its entire complexity and characteristics, and it is
usually prone to noise and interferences. Recently, due to technological
advances, the use of multiple types of measurement instruments and
sensors have become more and more popular; nowadays, such equip-
ment is smaller, less expensive, and can be mounted on every-day
products and devices more easily. In contrast to a single sensor, mul-
timodal sensors may capture complementary aspects and features of the
measured phenomenon, and may enable us to extract a more reliable
and detailed description of the measured phenomenon.

The vast progress in the acquisition of multimodal data calls for the
development of analysis and processing tools, which appropriately
combine data from the different sensors and handle well the inherent
challenges that arise. One particular challenge is related to the het-
erogeneity of the data acquired in the different modalities; datasets
acquired from different sensors may comprise different sources of
variability, where only few are relevant to the phenomenon of interest.

This particular challenge as well as many others have been the subject
of many studies. For a recent comprehensive reviews, see [1–3].

In this paper we consider a setting in which a physical phenomenon
is measured by multiple sensors. While all sensors measure the same
phenomenon, each sensor consists of different sources of variability;
some are related to the phenomenon of interest, possibly capturing its
various aspects, whereas other sources of variability are sensor-specific
and irrelevant. We present an approach based on manifold learning,
which is a class of nonlinear data-driven methods, e.g. [4–7], and
specifically, we use the framework of diffusion maps (DM) [8]. On the
one hand, manifold learning is particularly suitable for problems with
multiple modalities since it aims to capture the intrinsic geometric
structure of the underlying data and relies on minimal prior model
knowledge. This enables to handle multimodal data in a systematic
manner, without the need to specially tailor a solution for each mod-
ality. On the other hand, applying manifold learning to data acquired in
multiple (multimodal) sensors may capture undesired/nuisance geo-
metric structures as well. Recently, several manifold learning techni-
ques for multimodal data have been proposed [9–12]. In [9], the au-
thors suggest to concatenate the samples acquired by different sensors
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into unified vectors. However this approach is sensitive to the scaling of
each dataset, which might be especially diverse among datasets ac-
quired by different modalities. To alleviate this problem, it is proposed
in [10] to use DM to obtain “standardized” representation of each da-
taset separately, and then to concatenate these “standardized” re-
presentations into the unified vectors. Despite handling better multi-
modal data, this concatenation scheme does not utilize the mutual
relations and co-dependencies that might exist between the datasets.

While methods such as those presented in [9,10,12] take into ac-
count all the measured information, the methods presented in
[11,13–15] use local kernels to implement nonlinear filtering. Specifi-
cally, following a recent line of study in which multiple kernels are
constructed and combined [16–19], in [13,14], it was shown that a
method based on alternating applications of diffusion operators extracts
only the common source of variability among the sensors, while fil-
tering out the sensor-specific components. Therefore we choose to es-
tablish our method based on DM which relies on those theoretical
foundations. For other nonlinear methods, such as local CCA [11] and
kernel CCA [15], more efforts are needed to better understand their
theoretical foundation, yet, they may also be used as an alternative to
DM and alternating diffusion (AD) and empirically tested as well. The
shortcoming of alternating applications of diffusion operators arises
when having a large number of sensors; often, sensors that measure the
same system capture different information and aspects of that system.
As a result, the common source of variability among all the sensors
captures only a partial or empty look of the system, and important
relevant information may be undesirably filtered out.

Here, we address the tradeoff between these two approaches. That
is, we aim to maintain the relevant information captured by multiple
sensors, while filtering out the nuisance components. Since the re-
levance of the various components is unknown, our main assumption is
that the sources of variability which are measured only in a single
sensor, i.e., sensor-specific, are nuisance. Conversely, we assume that
components measured in two or more sensors are of interest.
Importantly, such an approach implements implicitly a smart “sensor
selection”; “bad” sensors that are, for example malfunctioned and
measure only nuisance information, are automatically filtered out.
These assumptions stem from the fact that the phenomenon of interest
is global and not specific to one sensor. We propose a nonlinear filtering
scheme, in which only the sensor-specific sources of variability are
filtered out while the sources of variability captured by two or more
sensors are preserved.

Based on prior theoretical results [13,14], we show that our scheme
indeed accomplishes this task. We illustrate the main features of our
method on a toy problem. In addition, we demonstrate its performance
on real measured data in an application for sleep stage assessment
based on multiple, multimodal sensor measurements. Sleep is a global
phenomenon with systematic physiological dynamics that represents a
recurring non-stationary state of mind and body. Sleep evolves in time
and embodies interactions between different subsystems, not solely
limited in the brain. Thus, in addition to the well-known patterns in
electroencephalogram (EEG) signals, its complicated dynamics are
manifested in other sensors such as sensors measuring breathing pat-
terns, muscle tones and muscular activity, eyeball movements, etc. Each
one of the sensors is characterized by different structures and affected
by numerous nuisance processes as well. In other words, while we could
extract the sleep dynamics by analyzing different sensors, each sensor
captures only part of the entire sleep process, whereas it introduces
modality artifacts, noise, and interferences. We show that our scheme
allows for an accurate systematic sleep stage identification based on
multiple EEG recordings as well as multimodal respiration measure-
ments. In addition, we demonstrate its capability to perform sensor
selection by artificially adding noise sensors.

The remainder of the paper is organized as follows. In Section 2 we
present a formulation for the common source extraction problem and
present an illustrative toy problem. In Section 3, a brief review for the

method proposed in [13,14] is outlined, and then, a detailed descrip-
tion and interpretation of the proposed scheme are presented. In
Section 4, we first demonstrate the capabilities of the proposed scheme
on the toy problem introduced in Section 2. Then, in Section 5, we
demonstrate the performance in sleep stage identification based on
multimodal measured data recorded in a sleep clinic. Finally, in
Section 6, we outline several conclusions.

2. Problem setting

Consider a system driven by a set of K hidden random variables
= …θ θ θΘ { , , , },K(1) (2) ( ) where �∈θ k d( ) k. The system is measured by M

observable variables = ⋯s m M, 1, , ,m( ) where each sensor has access
to only a partial view of the entire system and its driving variables Θ. To
formulate it, we define a “sensitivity table” given by the binary matrix

�∈ ×S ,K M
2 indicating the variables sensed by each observable variable.

Specifically, the (k,m)th element in S indicates whether the hidden
variable θ(k) is measured by the observable variable s(m). It should be
noted that this binary notation is a simplification that does not take into
account “soft degrees of observability”, e.g., the nonlinearity of the
observation function, measurement noise, etc. Theoretically, when we
have sufficient data, the algorithm is guaranteed to work for any bi-
lipschitz observation function. Yet, when the amount of data is limited,
these degrees of observability are dominated by the Lipschitz constants
of the observation function and by the signal-to-noise ratio. Some of
these observability aspects were addressed in [20], and further quan-
tification is left for future work. The observable variables are therefore
given by

�= ∈s nh (Θ , )m
m

m m D( ) ( ) ( ) m (1)

where hm( · ) is a bilipschitz observation function, �∈n m p( ) m are hidden
random variables captured only by the mth observable variable, and
Θ(m) is the subset of driving hidden variables of interest sensed by s(m),
given by

= ∀ = ⊆ = …θ k S m MΘ { , 1} Θ, 1, ,m k
k m

( ) ( )
, (2)

The random hidden variables n(m) are sensor-specific (associated only
with the mth observer). They are conditionally independent given the
hidden variables of interest and will be assumed as noise/nuisance
variables. We further assume that each random hidden variable in Θ is
measured by at least two observable variables, such that ∑ ≥= S 2m

M
k m1 ,

for each = ⋯k K1, , . As a result, we refer to the hidden variables θ(k) in
Θ as common variables.

In order to simplify the notation, we denote the subset of all hidden
variables (both common and sensor-specific) measured by the mth ob-
servable by = n{Θ , }m m m( ) ( ) ( )S . Furthermore, we assume that the di-
mensions of the observations and the hidden variables satisfy

∑≥ + = …
∈

D d p k M( ), 1, 2, ,
θ

m k k
Θk m( ) ( ) (3)

i.e., the observations are in higher dimension than the hidden common
and nuisance variables.

An observation of the system denoted as …s s s( , , , )i i i
M(1) (2) ( ) is asso-

ciated with a realization of the hidden variables = …θ θΘ ( , , )i i i
K(1) ( ) and

realizations of the M hidden nuisance variables …n n( , , )i i
M(1) ( ) . Given N

observation samples … =s s s{( , , , )} ,i i i
M

i
N(1) (2) ( )

1 our goal is to obtain a
parametrization for the underlying realizations of the common hidden
random variables … =θ θ{( , , )}i i

K
i
N(1) ( )

1 while filtering out the nuisance

variables … =n n{( , , )}i i
M

i
N(1) ( )

1. We note that the observations index i may
represent the time index in case of time series.

2.1. Illustrative toy problem

We illustrate the problem setting using the following toy example.
Consider six rotating arrows captured in simultaneous snapshots by
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