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A B S T R A C T

In multi-view clustering, datasets are comprised of different representations of the data, or views. Although each
view could individually be used, exploiting information from all views together could improve the cluster
quality. In this paper a new model Multi-View Kernel Spectral Clustering (MVKSC) is proposed that performs
clustering when two or more views are available. This model is formulated as a weighted kernel canonical
correlation analysis in a primal-dual optimization setting typical of Least Squares Support Vector Machines (LS-
SVM). The primal model includes, in particular, a coupling term, which enforces the clustering scores corre-
sponding to the different views to align. Because of the out-of-sample extension, this model is easily applied to
large-scale datasets. The performance of the proposed model is shown on synthetic and real-world datasets, as
well as on some large-scale datasets. Experimental comparisons with a number of other methods show that using
multiple views improves the clustering results and that the proposed method is competitive with other state-of-
the-art algorithms in terms of clustering accuracy and runtime. Especially on the large-scale datasets the ad-
vantage of the proposed method is clearly shown, as it is able to handle larger datasets than the other state-of-
the-art algorithms.

1. Introduction

In various application domains, data from different sources or views
are available. Many real-world datasets have representations in the
form of multiple views [1]. For example, web pages can be classified
based on both the page content (text) and hyperlink information [2],
for social networks one could use the user profile but also the friend
links [3], images can be classified based on the colors as well as the
texture [4], and so on. Although each of the views by itself might al-
ready be sufficient for a given learning task, additional views often
provide complementary information which can lead to an improved
performance [5]. For an extensive overview of recent multi-view
learning methods we refer to the work of Zhao et al. [6].

The information from multiple views can be fused in different ways
as well as in different stages of the training process. In early fusion
techniques, the views are fused before the training process starts, e.g.
by means of feature concatenation [7] or in a more complex way like
the work done by e.g. Yu et al. [8] and Lin et al. [9]. In this way the
information from all views is taken into account early on in the training
process. In late fusion techniques the models are usually trained sepa-
rately and a combination of the individual results is taken to determine
the final result. This combination can be formed in many ways, like for
example by taking a weighted average, e.g. as done by Bekker et al.

[10] for classification, or selective voting, e.g. as done by Xie et al. [11]
for clustering.

The clustering problem [12] refers to the task of finding a partition of
a given dataset based on some similarity measure between the ex-
amples. While there are various clustering algorithms available (e.g. the
work by Sharma et al. [13,14] and Elhamifar et al. [15]), Spectral
Clustering methods are increasingly popular due to the well-defined
mathematical framework and its strong performance on arbitrary
shaped clusters [16]. Spectral clustering methods make use of the ei-
genvectors of a rescaled affinity matrix derived from the data (i.e. the
Laplacian) to divide a dataset into natural groups, such that points
within the same group are similar and points in different groups are
dissimilar to each other [17–19]. Kernel Spectral Clustering (KSC) [20] is
a well-known clustering technique that represents a spectral clustering
formulation as a weighted kernel PCA problem, cast in the LS-SVM
framework [21].

In this paper a new model is introduced, called Multi-View Kernel
Spectral Clustering (MVKSC)1, which is an extension to KSC that allows
to deal with multiple data-sources. This is done by integrating two or
more KSC models in the joint MVKSC approach and adding a coupling
term which maximizes the correlation of the score variables. This
coupling can be thought of as a combination of early and late fusion,
where the information of all views is already exploited during the
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training phase while still allowing for some degree of freedom to model
the data from the different views differently.

Furthermore, the proposed model is also closely related to Kernel
Canonical Correlation Analysis (KCCA) [21], which is a method for de-
termining nonlinear relations among several variables. Although the
KCCA learning task is essentially different from clustering, the two
formulations are similar.

Expanding spectral clustering techniques to multi-view learning has
been done in the past, for example by Cai et al. [22], Kumar et al. [23],
Xie et al. [11] and Xia et al. [24]. Although these methods have
achieved good accuracy, they are usually computationally expensive
and not suitable for large-scale data. Li et al. [25] designed a method to
deal with large-scale data by forming a bipartite graph for each view
and running spectral clustering on the fusion of all graphs.

Similar to KSC, MVKSC has a natural out-of-sample extension to
deal with new test data. Due to this extension the method is able to deal
with large-scale data by training on only a small randomly chosen
subset. This approach was used for KSC on large-scale network data by
Mall et al. [26], although the authors did not simply pick the subset at
random but used an algorithm that preserves the overall community
structure. There are more complex extensions to KSC to deal with large-
scale data, for example the fixed-size approach done by Langone &
Suykens [27], but we show here that even this simple approach
achieves good performance.

This paper shows how the clustering performance achieved by KSC
on one view can be improved by exploiting information from multiple
different views. The paper further shows that the out-of-sample exten-
sion can be used to deal with large-scale data in a natural way and
shows the performance of MVKSC on a real-world large-scale dataset.

We will denote matrices as bold uppercase letters and vectors as
bold lowercase letters. The superscript [v] will denote the vth set of
variables for KCCA or the vth view for the multi-view method. Whereas
the superscript (l) will denote the lth binary clustering problem in case
there are more than two clusters.

The rest of this paper is organized as follows: Section 2.1 and
Section 2.2 give a summary of the KCCA and the KSC model respec-
tively. Section 3 discusses the proposed model MVKSC. It shows the
mathematical formulation, explains the cluster assignment for the
training data as well as for the out-of-sample test data and describes the
model selection process. Section 4 discusses the experiments done with
MVKSC and compares it to other state-of-the-art methods, and to KSC
on the separate views alone. Section 4 further discusses the obtained
results. Section 5 shows the performance of MVKSC when handling
large-scale data. Finally, in Section 6 some conclusions are drawn.

2. Background

This section introduces the concepts of Kernel Canonical Correlation
Analysis (KCCA) and Kernel Spectral Clustering (KSC).

2.1. Kernel Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) was originally studied by
Hotelling [28] and is a statistical method for determining linear rela-
tions among several variables. A nonlinear extension of CCA was in-
troduced by Lai and Fyfe [29], Bach and Jordan [30] and by Van Gestel
et al. [31] as kernel CCA or KCCA. To determine nonlinear relations, the
input space is mapped to a high-dimensional feature space where
classical CCA is applied.

A formulation in the LS-SVM framework was proposed by Suykens
et al. [21]. Given data �= ⊂=x{ }i i
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�∈ +γ[2] are regularization parameters.

The dual problem related to this primal formulation is:
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are the elements of these centered kernel matrices for = …k l N, 1, , . In
practice they can be computed by =Ω ΩM Mc c c
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T is a centering matrix. α[1]
and α[2] are the Lagrange multipliers relayed to the constraints in
Eq. (1), also called the dual variables. The kernel functions

� � �× →K : d d[1] [1] [1] and � � �× →K : d d[2] [2] [2] are similarity functions
and have to be positive definite.

The eigenvalues and eigenvectors that give an optimal correlation
coefficient value are selected. The score variables on the training data
can be computed by:
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Since the KCCA method is used to find interesting relations between
variables it could be applied to do input selection. It is however im-
portant to make a good choice of the regularization constants γ[1] and
γ[2] and of the kernels and their tuning parameters. For this purpose an
additional validation set can be used to ensure meaningful general-
ization of the method.

2.2. Kernel Spectral Clustering

This section summarizes the Kernel Spectral Clustering (KSC) model
as introduced by Alzate & Suykens [20]. KSC represents a spectral
clustering formulation as a weighted kernel PCA problem, cast in the
LS-SVM framework [21].

Given training data �= ⊂=x{ }i i
N d

1D and the number of clusters k,
the primal model of KSC is formulated as follows:
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� �→φ: d dh is the mapping to a high-dimensional feature space, b(l) are

bias terms, �∈− ×D N N1 is the inverse of the degree matrix D with
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