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A B S T R A C T

The present paper is Part 2 in this series of two papers. In Part 1 we provided an introduction to Multiple
Classifier Systems (MCS) with a focus into the fundamentals: basic nomenclature, key elements, architecture,
main methods, and prevalent theory and framework. Part 1 then overviewed the application of MCS to the
particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in
which MCS has resulted in important achievements. Here in Part 2 we present in more technical detail recent
trends and developments in MCS coming from multimodal biometrics that incorporate context information in an
adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities
that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly
as in Part 1, methods here are described in a general way so they can be applied to other information fusion
problems as well. Finally, we also discuss here open challenges in biometrics in which MCS can play a key role.

1. Introduction

The present paper is Part 2 in a series of two papers dedicated to
overviewing the field of Multiple Classifier Systems (MCS) in bio-
metrics. In Part 1, we introduced the fundamentals of MCS [1], in-
cluding: nomenclature, architecture, and a flexible theoretical frame-
work. We then provided a review of MCS applied to multimodal
biometric person authentication in the last 25 years [2]. That review
was developed using a generic MCS framework and mathematical no-
tation, with the purpose of facilitating the transfer of MCS achieve-
ments from biometrics to other pattern recognition applications like
video surveillance [3], speech technologies [4], human-computer in-
teraction [5], data analytics [6], behavioural modelling [7], or re-
commender systems [8].

Here in Part 2 we build from Part 1 to overview more recent trends
in MCS applied to biometrics, with a focus in context-based information
fusion [9]. In particular, the main MCS architectures in biometrics that
have successfully exploited context information are based on quality
measures [10], or user-specificities [11]. Similarly as in Part 1, the
methods here are described in a general way so they can be applied to
other information fusion problems as well. Additionally, particular
implementations of the reported context-based MCS architectures are
described using two paradigms: 1) statistical based on Bayesian statis-
tics, and 2) discriminative based on Support Vector Machine classifiers.

We end this series of two papers with a discussion of open chal-
lenges in biometrics. The challenges exposed largely follow the ex-
cellent survey and outlook of the field of biometric person recognition

by Jain et al. [2], which we complement with our personal view, and
augment with the way MCS developments can advance those key
challenges in biometrics. With that, we also hope to provide some light
about the future of other pattern recognition and information fusion
areas as well.

The present paper is organized as follows. Section 2 overviews
current trends in context-based fusion for biometrics, first focusing in
user-dependent fusion, and then in quality-based fusion. In both cases,
we first discuss general architecture and then describe specific fusion
algorithm under two paradigms: statistical (combination approach),
and discriminative (classification approach). Section 3 summarizes
open challenges in biometrics, and discusses the role of MCS methods in
overcoming those challenges. The paper ends in Section 4 with some
concluding remarks.

2. Trends in biometrics: Context-based MCS

This section is focused on MCS for multimodal biometric authenti-
cation, adapted both to user-specificities and to the input biometric
quality. In the following sections we summarize key related works in
these areas.

The adaptive MCS schemes for multimodal biometrics are divided
into three classes: 1) user-dependent, 2) quality-based, and 3) user-
dependent and quality-based. Although the last class includes the first
two classes as particular cases, the three classes are introduced se-
quentially in order to facilitate the description.

For each class of methods, we first sketch the system model and then
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we derive particular implementations by using standard pattern re-
cognition methods, either based on generative assumptions following
Bayesian theory, or discriminative criteria using Support Vector
Machines. These two classes of implementations aim at minimizing the
Bayesian error and the Structural Risk of the verification task, respec-
tively.

In the rest of the paper we use the following nomenclature and
conventions. Given a multimodal biometric verification system con-
sisting of M different unimodal systems = …j M1, , , each one computes
a similarity score s between an input biometric pattern and the enrolled
pattern or model of the given claimant k. The similarity scores s are
normalized to x. Let the normalized similarity scores provided by the
different unimodal systems be combined into a multimodal score

= …x xx [ , , ]M
T

1 . The design of a fusion scheme consists in the definition
of a function →f : ,M  so as to maximize the separability of client {f
(x)|client attempt} and impostor {f(x)|impostor attempt} fused score
distributions. This function may be trained by using labelled training
scores (xi, zi), where = = =z {0 impostor attempt, 1 client attempt}i .

In Fig. 1 we depict the general system model including all the no-
tations defined above.

2.1. User-dependent multimodal biometrics

The idea of exploiting user-specific parameters at the score level in
multimodal biometrics was introduced, to the best of our knowledge, by
[12]. In this work, user-independent weighted linear combination of
similarity scores was demonstrated to be improved by using either user-
dependent weights or user-dependent decision thresholds, both of them
computed by exhaustive search on the testing data. The idea of user-
dependent fusion parameters was also explored by [13] using non-
biased error estimation procedures. Other attempts to personalized
multimodal biometrics include the use of the claimed identity index as a
feature for a global trained fusion scheme based on Neural Networks
[14], computing user-dependent weights using lambness metrics [15],
and using personalized Fisher ratios [16].

Toh et al. [17] proposed a taxonomy of score-level fusion ap-
proaches for multi-biometrics. Multimodal fusion approaches were
classified as global or local depending firstly on the fusion function (i.e.,
user-independent or user-dependent fusion strategies) and secondly
depending on the decision making process (i.e., user-independent or
user-dependent decision thresholds): global-learning and global-deci-
sion (GG), local-learning and global-decision LG, and similarly GL and
LL. Some example works of each group are listed in Table 1.

These local methods (user-dependent fusion or decision) are con-
fronted with a big challenge: training data scarcity, as the amount of
available training data in localized learning is usually not sufficient and
representative enough to guarantee good MCS parameter estimation
and generalization capabilities. To cope with this lack of robustness
derived from partial knowledge, the use of robust adaptive learning
strategies based on background information was proposed in related
research areas [23]. The idea of exploiting background information and
adapt from there the fusion functions of MCS based on context in-
formation was introduced in biometrics by Fierrez-Aguilar et al.
[11,24], and was soon followed by others [25]. In brief, in these con-
text-based MCS methods, the relative balance between the background

information (from a pool of background users) and the local data (a
given user) is performed as a tradeoff between both kinds of informa-
tion.

The system model of user-dependent score fusion including the
mentioned adaptation from background information is shown in Fig. 2.

Two selected algorithms implementing the discussed adapted user-
dependent fusion are summarized in the following sections.

2.1.1. User-dependent MCS: Combination approach
Here we outline this algorithm, representative of context-based MCS

by adapting the score fusion function to each user from general back-
ground information. For a more detailed description and experimental
evaluation see [24].

Impostor and client score distributions are modelled as multivariate
Gaussians = μ σp ω Nx x( ) ( , )0 0 0

2 and = μ σp ω Nx x( ) ( , ),1 1 1
2 respec-

tively1. The fused score yT of a multimodal test score xT is defined then
as follows

= = −y f p ω p ωx x x( ) log ( ) log ( ),T T T T1 0 (1)

which is known to be a Quadratic Discriminant (QD) function con-
sistent with Bayes estimate in case of equal impostor and client prior
probabilities [26]. The score distributions are estimated using the
available training data as follows:

Global. The training set = =X zx( , )i i i
N

G 1
G includes multimodal scores

from a number of different clients, and μ σ μ σ({ , }, { , })G,0 G,0
2

G,1 G,1
2 are

estimated by using the standard Maximum Likelihood criterion
[27]. The resulting fusion rule fG(x) is applied globally at the op-
erational stage regardless of the claimed identity.
Local. A different fusion rule fk, L(x) is obtained for each client k
enrolled in the system by using Maximum Likelihood density esti-
mates μ σ μ σ({ , }, { , })k k k k,L,0 ,L,0

2
,L,1 ,L,1

2 computed from a set of devel-
opment scores Xk of the specific client k.
Adapted. The adapted fusion rule fk, A(x) of client k trades off the
general knowledge provided by the user-independent development
data XG, and the user specificities provided by the user-dependent
training set Xk, through Maximum a Posteriori density estimation
[27]. This is done by adapting the sufficient statistics as follows
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= + + − + −
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For each class = = =l {0 impostor, 1 client}, a data-dependent
adaptation coefficient

= +α N N r/( )l l l (3)

is used, where Nl is the number of local training scores in class l, and
r is a fixed relevance factor.

Note that other statistical models or other techniques for trading-off
the general and local knowledge can be used in a similar way.

Fig. 1. General system model of multi-
modal biometric authentication using
score level fusion including name conven-
tions.

1 We use diagonal covariance matrixes, so σ2 is shorthand for diag(Σ). Similarly, μ2 is
shorthand for diag(μμ′).
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