
Pattern Recognition 82 (2018) 56–67 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

A factor graph evidence combining approach to image defogging 

Lawrence Mutimbu 

a , ∗, Antonio Robles-Kelly 

b , c 

a Research School of Eng., ANU, Canberra, ACT 2601, Australia 
b School of Inf. Tech., Deakin University, Waurn Ponds, VIC 3216, Australia 
c CSIRO, Black Mountain Laboratories, Canberra, ACT 2601, Australia 

a r t i c l e i n f o 

Article history: 

Received 14 February 2017 

Revised 25 January 2018 

Accepted 24 April 2018 

Available online 5 May 2018 

Keywords: 

Factor graphs 

Evidence combining 

Simplicial spanning tree 

Procrustes transformation 

Maximum a-posteriori inference 

Image defogging 

a b s t r a c t 

In this paper we introduce an evidence combining inference approach based on factor graphs. The 

method presented here is quite general in nature and exploits the capability of factor graphs to combine 

results from multiple algorithms which correspond to different generative models or graphical structures. 

We do this by using layers across the factor graph to represent each of the algorithms under considera- 

tion. For purposes of inference, we convert each of these layers into a simplicial complex using a convex 

hull algorithm. This allows us to obtain a simplicial spanning tree for each of these simplicial complexes. 

Making use of this simplicial spanning tree, which corresponds to the reparameterisation of the junction 

tree of the factor graph, exact inference can be performed using the sum/max-product algorithm. Further- 

more, we employ a Procrustean transformation so as to avoid degenerate cases in the inference process. 

We illustrate how the method can be used for evidence combining in image defogging and compare it 

against other alternatives elsewhere in literature. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many classical problems in computer vision, pattern recogni- 

tion and data analytics, such as image denoising, dehazing, mo- 

tion analysis and depth recovery can be viewed as being comprised 

of multiple interrelated sub-problems with individual constraints. 

These sub-problems can be considered to be individual systems 

that are interacting with one another through complex relation- 

ships. 

Here, we present factor graphs [1,2] as means to modelling such 

different relationships using a general graphical model, applicable 

to a wide variety of tasks which can be abstracted as a multilayer 

graph-based inference problem. The method presented here per- 

forms statistical inference by combining sum-products of probabil- 

ities that may originate from different graphical structures or gen- 

erative models. Since factor graphs provide a means for the struc- 

tural factorisation of a function over several variables, here we de- 

fine a likelihood function that takes into account the information 

across layers in the graph. Furthermore, we propose a novel math- 

ematical description to the Markovian factor graph models, which 

have been shown to be, in theory, exactly solvable using clique 

trees known as junction trees [3,4] . 
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Similarly, Markov Random Fields (MRFs) [5,6] provide a statisti- 

cal framework for modelling variables that correspond to adjacent 

vertices in the graph in a consistent manner. This is the case in 

many computer vision and image processing applications, where 

MRFs have found application in image defogging [7–9] , image seg- 

mentation [10,11] and face recognition and tracking [12] . In these 

approaches, pixels, edges, corners, etc. are modelled as nodes in 

a graphical structure and their conditional dependencies are sub- 

ject to adjacency constraints. In MRFs, each node in the graph is 

assigned a cost as defined by their unitary relationships [13] . The 

edges in the graph incident on the node also carry a weight which 

adds to the cost of assignment. This cost captures the binary rela- 

tion between adjacent vertices representing the image tokens. 

Indeed, coupled, factorial and multilayered Markov random 

fields (MRFs) can be viewed as different instances of factor graphs. 

Further, multilayered MRFs have been applied to segmentation 

[14–16] , motion estimation [17,18] and tracking [19] . In these 

graphical models, each layer corresponds to a belief map derived 

from different features [14] , label fields [15] or scales [16] . For 

motion analysis, the multiple layers of the MRF correspond to a 

layer in the graphical model. In a related approach, Ablavsky and 

Sclaroff [19] have used a layered MRF so as to track partially oc- 

cluded objects. In [19] , the layers are formulated with particular 

emphasis on representing occluders using mobility and visibility 

constraints. These “occluder layers” are ordered according to their 

distance with respect to the camera centre and interact by sharing 

observations of the tracked object through activity zones. 
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Coupled and factorial Markov random fields consider two or 

more sets of variables which correspond to separate MRFs and 

model their interconnections between layers more explicitly. In 

coupled MRFs (CMRFs), the variables are estimated simultaneously 

through a layer-wise alternating maximisation procedure between 

layers. These models can be traced back to the work in [20] , where 

the interlinked CMRF consists of one binary valued MRF for both 

edges and image intensities. Coupled MRFs has been employed for 

line processes [6,20] , image restoration [21] and optical flow [22] . 

Further, coupled MRFs based on contrasting assumptions can be 

found in segmentation [23,24] and tracking [25] . In a similar fash- 

ion, Narashima [26] performs stereo matching by employing a cou- 

pled MRF to model the interactions between object boundaries and 

their surface normals. 

In factorial MRFs [27] , the layered structure of the graph is 

exploited so as to effect inference based upon an alternating 

expectation-maximisation (EM) algorithm. In [8,28] , factorial MRFs 

are used for defogging/dehazing, where the scene depth map and 

albedo represent two layers. In this manner, the depth and albedo 

of the scene are viewed as variables, each described by an inde- 

pendent MRF where the “complementary” variables are given by 

the observables. In [29,30] , closed form solutions for defogging us- 

ing factorial MRFs have been presented. These make use of a re- 

laxed formulation of the problem in hand [29] or non-linear opti- 

misation [30] . 

Note that, conceptually, the fundamental difference between 

coupled MRFs, factorial MRFs and multilayer MRFs is subtle. As 

mentioned earlier, here we present a method for inference in fac- 

tor graphs for tasks that can be graphically represented in terms 

of interconnected variables in a layered arrangement. This treat- 

ment naturally leads to maximum a posteriori inference using max- 

product message passing. Thus, this paper not only provides a 

means for a tractable way to perform inference using local rep- 

resentations, but also allows for factorial, coupled and multilayer 

MRFs to be viewed as relational structures whose inter and in- 

tra layer variable relationships are governed by the factors in the 

graph. 

The rest of this paper is organised as follows. We commence 

by introducing factor graphs and their reparameterised structure 

in Section 2 , where, in Section 2.1 , we show how algebraic topol- 

ogy and homology can be used to describe factor graphs and, in 

Section 2.2 , we ellaborate further on the link between simplicial 

complexes and spanning trees. In Section 3 we present our infer- 

ence scheme based upon the max-product algorithm and explain 

how prototypes can be matched across layers using a Procrustean 

transformation. In Section 4 we present the step sequence of our 

method. In Section 5 , we illustrate the utility of our method in for 

image dehazing, which has been traditionally tackled elsewhere 

using layered MRFs. Finally, we conclude on the work presented 

here in Section 6 . 

2. Factor graphs 

Our choice of factor graphs stems from the fact that these are 

a generalisation of probabilistic graphical models, which allow us 

to formulate the problem in an evidence combining setting. To do 

this, we note that, in general, graphical models often operate upon 

observables (pixels, textons, features, etc.) so as to recover vari- 

ables (labels, values, states, etc.) which can be expressed as a mix- 

ture of prototypes. In this manner, available data, i.e . observables, 

can be described making use of a finite set of characteristic or typ- 

ical examples, i.e. prototypes, of the observables under considera- 

tion. It is worth noting in passing that the concepts of prototypes 

and observables above, and used throughout the paper, are con- 

sistent with those widely used in the pattern recognition and ma- 

chine learning literature [31] . This treatment allows for the use of 

the max-product algorithm in factor graphs [1] for purposes of in- 

ference. Factor graphs generalise both Markov random fields and 

directed graphs such as Bayesian networks. They also model vari- 

able relationships that are not necessarily probabilistic, a character- 

istic which has made them useful in coding theory, error correcting 

codes [2,32] and signal processing [33,34] . 

The left-hand panel of Fig. 1 shows a factor graph arising from 

a 2D lattice. These are typical of computer vision problems. Exact 

inference for such a graph can be effected by creating a chordal 

graph through a variable elimination sequence and constructing a 

junction tree. The chordal graph and junction tree resulting from 

these procedures for the grid-graph are displayed in the middle 

and right-hand panel of the Fig. 1 . Mathematically, the factor graph 

shows a factorisation of the joint probability distribution P ( x ) ac- 

cording to the Gibbs measure, i.e. 

P ( x ) = 

1 

Z 

∏ 

c∈C 
ψ(x c ) , (1) 

where ψ( x c ) is a potential function defined over subsets of vari- 

ables x c in the clique c and Z is a normalisation constant. 

When the graph is converted into a chordal one, the probability 

in Eq. (1) can be expressed as follows 

P (x ) = 

∏ 

c∈C 
P (x c ) 

∏ 

s ∈S 
P (x s ) 

, (2) 

where P ( x c ) is the joint probability of the clique with the subset of 

variables x c ∈ x and P ( x s ) is the joint probability of the variables in 

the separator set x s = x c i ∩ x c j , where cliques c i and c j are adjacent, 

i.e. connected by an edge. As such, the number of separator sets is 

equal to the number of edges in the junction tree. In Appendix A , 

we show how the Gibbs distribution in Eq. (1) can be reparame- 

terised so as to arrive at the expression in Eq. (2) . Note that Koller 

et al. [35] also provide a proof for Eq. (2) which is based on mes- 

sage passing. We have included the proof in the appendix since it 

does not depend on the message passing operation over the graph 

and, hence, it shows that the factorisation above is independent of 

the traversal operation across the graph. Later on, we will present 

a method based on message passing so as to perform inference on 

the graph. 

For the junction tree in the right-hand panel of Fig. 1 , the joint 

probability can be computed making use of the factorised quotient 

(2) . 1 This is important since it opens-up the possibility of approxi- 

mating the distribution P ( x ) by obtaining a tree via variable elimi- 

nation across the factor graph. 

2.1. Simplicial complexes 

If we view the graphical model in the left-most panel of Fig. 2 

as a set of triangles organised in a sequence as obtained from a 

convex hull or Delaunay triangulation, we can obtain the graph in 

the middle of Fig. 2 . Note that this corresponds to the reparameter- 

isation of the Gibbs distribution in Eq. (1) in terms of 2-simplexes, 

1 For the junction tree on the right-most panel of Fig. 1 , and using Eq. (2) we 

get 

P(x ) = 

P(x 1 , x 2 , x 4 ) P(x 2 , x 4 , x 5 , x 6 ) P(x 2 , x 3 , x 6 ) 

P(x 2 , x 4 ) P(x 2 , x 6 ) P(x 4 , x 5 , x 6 ) 

× P(x 4 , x 5 , x 6 , x 8 ) P(x 4 , x 7 , x 8 ) P(x 6 , x 8 , x 9 ) 

P(x 4 , x 8 ) P(x 6 , x 8 ) 

= P(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) . (3) 
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