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a b s t r a c t 

Novelty detection is an important task in a variety of applications such as object recognition, defect local- 

ization, medical diagnostics, and event detection. The objective of novelty detection is to distinguish one 

class, for which data are available, from all other possible classes when there is insufficient information to 

build an explicit model for the latter. The data from the observed class are usually represented in terms 

of certain features which can be modeled as random variables (RV). An important challenge for novelty 

detection in multivariate problems is characterizing the statistical dependencies among these RVs. Failure 

to consider these dependencies may lead to inaccurate predictions, usually in the form of high false pos- 

itive rates. In this study, we propose conditional classifiers as a new approach for novelty detection that 

is capable of accounting for statistical dependencies of the relevant RVs without simplifying assumptions. 

To implement the proposed idea, we use Gaussian mixture models (GMM) along with forward stage-wise 

additive modeling and boosting methods to learn the conditional densities of RVs that represent our ob- 

served data. The resulting model, which is called a boosted conditional GMM, is then used as a basis 

for classification. To test the performance of the proposed method, we apply it to a realistic application 

problem for analyzing sensor networks and compare the results with those of alternative schemes. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Novelty detection is an unsupervised learning task which aims 

to identify the unknown or inconsistent samples from a set of 

training data [1,2] . This has variety of applications, especially in 

healthcare and medical diagnostics [3,4] , network security [5,6] , 

image and video processing [7–9] , monitoring of industrial and 

mechanical systems [10–13] , and analyzing sensor networks [14] . 

From the pattern recognition point of view, novelty detection 

can be viewed as a one-class classification. Important methods in 

this regard are distance-based approaches such as k-nearest neigh- 

bors [15] , one-class support vector machines (SVM) [16] , graph em- 

bedded one-class classifiers [17] , neural networks [18] , density es- 

timation and clustering [19] , random processes [20] , and decision 

tree based techniques such as one-class random forests [21] . For 

comparative evaluation of various novelty detection approaches, 

the readers are referred to [22] . These methods are usually most 

effective when the dependencies of random variables (RV), which 

represent the observed data, are weak. However, in some applica- 
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tions such as saliency detection in image processing [7] , analyzing 

sensor networks in structural health monitoring (SHM) [11,23,24] , 

and considering a patient’s family medical history and genetic tests 

for medical diagnostics [25] , the statistical dependencies of the rel- 

evant RVs can be strong. Neglecting dependencies in such applica- 

tions may considerably affect the inference results in various ways, 

such as increasing false positive rates. 

Previous studies [7,8,23,24] typically used probabilistic graph- 

ical models to encode the dependencies of RVs that are used to 

model the observed data. One main challenge in using these mod- 

els is learning their structures, which is impossible through stan- 

dard methods with the available information in novelty detec- 

tion [26] . Therefore, the application of such models is limited to 

the problems where the graph structure can be intuitively learned 

[24] such as saliency detection in image processing [8] . This limi- 

tation motivates the objective of this research, which is to develop 

a novelty detection technique that can account for dependencies of 

RVs with general, nonintuitive dependence structure. 

To address this objective, we introduce conditional classifiers 

for novelty detection. In doing so, our paper makes the follow- 

ing contributions: (1) We formulate a classification method that 

can encode arbitrary dependence structure among the RVs in 

novelty detection problems without any simplifying assumptions; 
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Table 1 

Notations that are used in this study. 

Notation Definition 

n Number of components in the system 

m Number of training sample points 

i Dummy index ∈ { 1 , . . . , n } 
j Dummy index ∈ { 1 , . . . , m } 
x i Bernoulli RV that can take on values in {−1 , +1 } 
x i A realization of x i that indicates the state of the i th component of the system 

y i Real-valued RV to model the feature vectors corresponding to the observations from the i th component 

d Dimensionality of feature vector y i , i.e., y i ∈ R d 
y ij The realization of y i corresponding to the j th observation 

Y The set of all feature vectors, i.e., Y = { y 1 , . . . , y n } 
Y A realization of Y 

p (b) 
Y Baseline distribution of Y 

Y (b) 
j 

j th sample that is drawn from p (b) 
Y 

S i , Y A set that contains the feature vectors corresponding to the system’s intact components, except the i th one, according to the observation set Y 

p (b) 
y i | S i, Y Baseline conditional distribution of features from the observations of the i th component given the observations of the intact components 

p ∗α The corresponding likelihood threshold of the high density region of p (b) 
y i | S i, Y for significance level α

(2) We develop an implementation of the proposed technique, 

named boosted conditional Gaussian mixture model (BC-GMM); 

(3) We experimentally evaluate the proposed method in an SHM 

application problem with various sensor network configurations 

and damage scenarios, and compare the results with other tech- 

niques. 

This paper is structured as follows: First, Section 3 describes 

the problem and our research approach. Then, the proposed 

method of conditional classifiers is explained in Section 4 fol- 

lowed by presenting the implementation of the method, BC-GMM, 

in Section 5 and a discussion on the algorithm’s convergence and 

computational complexity in Section 6 . The result of the exper- 

imental evaluation of the proposed method and its comparison 

with other novelty detection algorithms are presented in Section 7 . 

Finally, we conclude by a summary of our findings and a discussion 

on future research directions. 

2. Notations and terminologies 

Throughout this paper, RVs are denoted by sans-serif fonts (e.g., 

x ) and deterministic quantities such as realizations of RVs are de- 

noted using serif fonts (e.g., x ). For vectors and matrices we use 

bold lowercase letters and bold uppercase letters, respectively. For 

example, y is a random vector and A is a deterministic matrix. 

To exclude particular entries from a set we use “�” followed by 

another set that contains the entries to be excluded. As an exam- 

ple, consider Z = { z 1 , z 2 , z 3 } and let S = { z 2 } ; then, Z \ S = { z 1 , z 3 } . 
Probability density functions are denoted by p with a subscript 

denoting the RV; e.g., p y is the probability density of the RV y. The 

probability of an event e is denoted by P (e ) . 

Finally, note that in this paper, we use normal as the opposite of 

novel , e.g., a novel sample point with respect to a baseline distri- 

bution is the one that is NOT normal with respect to that distribu- 

tion. For Gaussian distributions we always use the term Gaussian . 

Table 1 summarizes the essential notation we use in this paper. 

Some of the notation in this table is associated with a system that 

has multiple components and certain properties. For more infor- 

mation about such systems, readers are referred to Section 4 . 

3. Problem description and research approach 

The main question that novelty detection aims to answer is as 

follows. Given m independent realizations of a RV y from an un- 

known distribution with density p y , is a new input y drawn from 

the same distribution [27] ? 

Typically, this problem is solved by approximating p y , or the 

range of y (i.e., the support supp (p y ) of the probability density), 

via methods such as density estimation and SVM [28] . These ap- 

proaches may be well suited to univariate problems; however, they 

may result in high false positive rates in multivariate cases due 

to the statistical dependencies among RVs [7] . To clarify this chal- 

lenge, consider a SHM problem where a mechanical system is in- 

strumented by n sensors in order to detect the occurrence of possi- 

ble damages. Let y i be the feature vector extracted from the struc- 

tural response measured by the i th sensor, i ∈ { 1 , . . . , n } . Also as- 

sume that for each y i , there exists a baseline distribution that rep- 

resents the expected behavior of the intact structure at that sen- 

sor location. Then, the monitoring objective is to continuously an- 

alyze new measurements y i so that, if damage occurs, we can de- 

tect and localize it, based on sensor locations where the responses 

deviate from their baseline state. Due to the connectivity among 

various sensor locations, via structural elements of the mechani- 

cal system, responses at these locations are dependent. Therefore, 

the occurrence of damage may affect responses at sensor locations 

within the close neighborhood of the damage and at other sensor 

locations which are further away. Damage localization may thus be 

blurred [24] . Various other applications, such as saliency detection 

in image processing, suffer from the same issue and solutions re- 

quire the dependencies among RVs to be taken into account when 

making inferences [7,8] . 

Our proposed approach for considering the statistical depen- 

dencies of RVs is to use their conditional densities instead of their 

marginals, i.e., to use the high density region of supp (p y i | S i ) in- 

stead of supp (p y i ) , where S i is a subset of { y 1 , . . . , y i −1 , y i +1 , y n } . 
A rationale for this proposition relies on the possibility of reduc- 

ing the uncertainty of a RV by conditioning it on other RVs. This 

can be understood by using the notion of entropy, H ( · ), as a mea- 

sure of uncertainty. It is known that the conditional entropy of 

an RV is always less than or equal to its marginal entropy, i.e., 

H( y i | S i ) ≤ H( y i ) [29–31] . Therefore, if S i is appropriately chosen, 

we expect the performance of the proposed approach to be at least 

as good as the univariate approach that considers the marginal 

densities of RVs as the basis for making inference. The details of 

the proposed method and how to choose S i are explained in the 

next two sections. 

4. Conditional Classifiers 

Consider a system with n components where each can take two 

possibles states, namely normal and novel . Let x i , i ∈ { 1 , . . . , n } be a 

Bernoulli RV that can take on values in {−1 , +1 } such that x i = +1 

and −1 indicate that the i th component of the system is normal 

and novel, respectively. Let y i ∈ R 

d be a feature vector from some 

observation of the i th component of the system. Consider the two 
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