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a b s t r a c t 

Manifold learning aims to discover the low dimensional space where the input high dimensional data are 

embedded by preserving the geometric structure. Unfortunately, almost all the existing manifold learn- 

ing methods were proposed under single view scenario, and they cannot be straightforwardly applied 

to multiple feature sets. Although concatenating multiple views into a single feature provides a plausible 

solution, it remains a question on how to better explore the independence and interdependence of differ- 

ent views while conducting manifold learning. In this paper, we propose a multi-view manifold learning 

with locality alignment (MVML-LA) framework to learn a common yet discriminative low-dimensional la- 

tent space that contain sufficient information of original inputs. Both supervised algorithm (S-MVML-LA) 

and unsupervised algorithm (U-MVML-LA) are developed. Experiments on benchmark real-world datasets 

demonstrate the superiority of our proposed S-MVML-LA and U-MVML-LA over existing state-of-the-art 

methods. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Real world objects, like images, texts or videos, are often rep- 

resented with high-dimensional data [1] . Given the high dimen- 

sionality, the sample size required to estimate the function of sev- 

eral variables to a given degree of accuracy will grow exponen- 

tially with the increasing number of variables which implies the 

so-called curse of the dimensionality problem [2] . Dimensionality 

reduction is a common approach to decrease the demanding on 

the training samples and can reveal the intrinsic structure of the 

distribution of original high-dimensional measurements [3] . 

Manifold learning is an effective approach for nonlinear dimen- 

sionality reduction [4,5] . It learns an embedded low-dimensional 

nonlinear manifold through precisely described and preserved lo- 

cal geometric information of the original high-dimensional space 

[6,7] . Representative manifold learning algorithms include Isomet- 

ric Feature Mapping (ISOMAP) [8] , Local Linear Embedding (LLE) 
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[9] , Laplacian Eigenmaps (LE) [10] , Hessian-based Local Linear Em- 

bedding (HLLE) [11] , Local Tangent Space Alignment (LTSA) [12] , 

etc. ISOMAP uses the geodesic distance to measure the geometric 

information within manifold. LLE assumes that a high-dimensional 

manifold can be approximated by small area in the Euclidean 

space, and the reconstruction coefficients of the local neighbors 

can be preserved in the low-dimensional space. LE manipulates 

on an undirected weighted graph to preserve the local neighbor 

relationships. HLLE obtains the low-dimensional representations 

through applying eigenanalysis to the matrix built by Hessian co- 

efficients. LTSA utilizes local tangent information to represent the 

local geometry information and then provides a global coordinate 

by this local tangent information. Following these methods, local- 

ity preserving projections (LPP) [13] , neighborhood preserving em- 

bedding (NPE) [14] , orthogonal neighborhood preserving projec- 

tions (ONPP) [15] and linear local tangent space alignment (LLTSA) 

[16] have been proposed respectively to solve the out-of-sample 

problem [17] . Recently, [5] proposes patch alignment framework 

which constructs local patches using their nearest neighbor rela- 

tionships to capture the local geometry. Patch alignment frame- 

work unifies all the aforementioned manifold learning algorithms, 

it can also be applied for discriminative dimensionality reduc- 

tion by imposing the discriminative information between nearest 

neighbors in the local optimization stage. Although the developed 
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Discriminative Locality Alignment (DLA) [5] reduces to Linear Dis- 

criminant Analysis (LDA) [18,19] under specific parameter setting, 1 

it is also feasible to deal with nonlinear distributed measurements, 

because of the utilization of local information. 

In many practical pattern classification applications, the raw 

data are often collected from different source domains or differ- 

ent descriptors [20] . The different sources or descriptors reveal the 

fundamental characteristics and properties of the objects from dif- 

ferent perspectives and are often treated as views of the objects. 

Different from single-view data which only contains partial infor- 

mation of the object, multi-view data usually carries complemen- 

tary information between different views [21,22] . Thus, multi-view 

data can be used to learn the object sufficiently and multi-view 

learning has draw broad attentions in machine learning commu- 

nity [23–30] . Existing multi-view learning algorithms can be di- 

vided into three categories [20] : co-training [31] , multiple ker- 

nel learning [32] and subspace learning [33] . Co-training trains 

separate yet correlated learners on each view to maximize the 

agreement and minimize the disagreement between the predic- 

tions from each view on the validation set. Multiple kernel learn- 

ing treats each view as a single kernel, it aims to choose suit- 

able multi-view sets and appropriate view combination methods 

to achieve better learning performances. Different from co-training 

and multiple kernel learning, subspace learning attempts to obtain 

a latent subspace shared by all views. 

However, most of the state-of-the-art manifold learning meth- 

ods are single-view-based. A naive method for manifold learning 

on multi-view data is just concatenating multiple views into a 

single feature vector. This concatenation makes no sense as data 

from different views may lie in quite different distributions. In 

this paper, we propose multi-view manifold learning with locality 

alignment (MVML-LA) framework to realize manifold learning un- 

der multi-view scenario. A common low-dimensional latent space 

that can preserve sufficient information of input views is gener- 

ated. More specifically, we integrate locality alignment in the la- 

tent space learning process to enhance its discriminating capabil- 

ity and develop two specific algorithms in supervised and unsuper- 

vised scenarios, respectively. To summarize, the main contributions 

of this work are twofold. 

• In order to extend manifold learning into multi-view scenario, 

we propose multi-view manifold learning framework. Differ- 

ent from existing multi-view manifold learning methods, our 

framework learns a common low-dimensional latent space that 

carries sufficient information of multiple views. Furthermore, 

locality alignment based on neighbor relationship is appended 

to enhance the discriminating ability of the low-dimensional la- 

tent space. 
• In practice, there is no guarantee that the data label informa- 

tion is always available. In order to improve the generaliza- 

tion ability of our framework, both supervised and unsuper- 

vised versions of MVML-LA are developed. 

The rest of this paper is organized as follows. In Section 2 , we 

formulate our problem and briefly describe the related works. Fol- 

lowing this, we introduce our proposed S-MVML-LA and U-MVML- 

LA in Section 3 . The experiments and results analysis are con- 

ducted in Section 4 . Finally, Section 5 concludes this paper. 

1 DLA selects k 1 nearest neighbors from the same class of point x i and k 2 nearest 

neighbors from the different classes of x i to form its local patch. In this sense, DLA 

reduces to LDA if k 1 is equal to the sample number from the within-class of x i and 

k 2 is equal to the sample number from the between-class of x i . 

Table 1 

Frequently used notations and descriptions. 

Notations Descriptions 

z i A single sample vector. 

z ij The j th within-class neighbour of z i . 

z ip The p th between-class neighbour of z i . 

Z = { z 1 , z 2 , . . . , z n } A n sample set. 

Z v = { z v 1 , z 
v 
2 , . . . , z 

v 
n } The v th view of Z . 

Q v The view generation function of view v . 

ɛ v The construction error of view v . 

Fig. 1. Latent space formulation. Multiple views (different colors represent different 

views, different shapes represent different classes) are located on spaces which can 

be generated by the latent space we learned. 

2. Problem formulation and related works 

2.1. Notations 

In this paper, scalars are represented by lowercase boldface 

letters (e.g., z ), vectors appear in lowercase letters (e.g., z ) and 

matrices are indicated by uppercase letters (e.g., Z ), specifically, I 

stands for the identity matrix. We represent a n sample set as 

Z = { z 1 , z 2 , . . . , z n } , where z i | n i =1 
denotes the i th column (or sam- 

ple) in Z . Moreover, Z v represents the v th view to sample set Z : 

Z v = { z v 1 , z 
v 
2 , . . . , z 

v 
n } . Furthermore, z ij represents the j th within-class 

neighbor of z i and z ip represents the p th between-class neigh- 

bor of z i . In addition, Q 

v and ɛ v are the view generation function 

and construction error for the v th view, respectively. For z ∈ R 

n ×1 , 

|| z || 2 = 

√ ∑ n 
i =1 z 

2 
i 

is the L 2 norm of z , where z i is the i th element 

of z . For clarity, we summarize the frequently used notations and 

their corresponding descriptions in Table 1 . 

2.2. Problem formulation and general framework 

The motivation of multi-view manifold learning is that the 

learned low-dimensional embedding should be more informative 

than it learned from individual view or concatenated view, thus 

boosting the performance of classical machine learning tasks, like 

classification. In order to ensure the information of each view is 

preserved in the learned low-dimensional latent space, we assume 

that the multiple views (or observations) are embedded on dif- 

ferent spaces of a common latent space (see Fig. 1 ). Specifically, 

suppose we are given m views of observations Z v | m 

v =1 
to form the 

joint feature space with n samples (i.e., Z v = { z v 
1 
, z v 

2 
, . . . , z v n } ∈ R 

K×n , 

where K is the dimensionality of the v th view), then the com- 

mon M ( M � K ) dimensional hidden representation representation 

X = { x 1 , x 2 , . . . , x n } ∈ R 

M×n of all views can be generated by the fol- 
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